|
|
|
@ -20,9 +20,9 @@ The script fetch and preprocess movie_reviews data set
|
|
|
|
|
that provided by NLTK
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import nltk
|
|
|
|
|
import numpy as np
|
|
|
|
|
from itertools import chain
|
|
|
|
|
from nltk.corpus import movie_reviews
|
|
|
|
|
from config import DATA_HOME
|
|
|
|
|
|
|
|
|
@ -50,9 +50,10 @@ def download_data_if_not_yet():
|
|
|
|
|
except LookupError:
|
|
|
|
|
print "Downloading movie_reviews data set, please wait....."
|
|
|
|
|
nltk.download('movie_reviews', download_dir=DATA_HOME)
|
|
|
|
|
print "Download data set success......"
|
|
|
|
|
# make sure that nltk can find the data
|
|
|
|
|
nltk.data.path.append(DATA_HOME)
|
|
|
|
|
print "Download data set success....."
|
|
|
|
|
print "Path is " + nltk.data.find('corpora/movie_reviews').path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_word_dict():
|
|
|
|
@ -67,24 +68,39 @@ def get_word_dict():
|
|
|
|
|
words_sort_list = words_freq.items()
|
|
|
|
|
words_sort_list.sort(cmp=lambda a, b: b[1] - a[1])
|
|
|
|
|
for index, word in enumerate(words_sort_list):
|
|
|
|
|
words_freq_sorted.append(word[0])
|
|
|
|
|
words_freq_sorted.append((word[0], index + 1))
|
|
|
|
|
return words_freq_sorted
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sort_files():
|
|
|
|
|
"""
|
|
|
|
|
Sorted the sample for cross reading the sample
|
|
|
|
|
:return:
|
|
|
|
|
files_list
|
|
|
|
|
"""
|
|
|
|
|
files_list = list()
|
|
|
|
|
download_data_if_not_yet()
|
|
|
|
|
neg_file_list = movie_reviews.fileids('neg')
|
|
|
|
|
pos_file_list = movie_reviews.fileids('pos')
|
|
|
|
|
files_list = list(chain.from_iterable(zip(neg_file_list, pos_file_list)))
|
|
|
|
|
return files_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_sentiment_data():
|
|
|
|
|
"""
|
|
|
|
|
Load the data set
|
|
|
|
|
:return:
|
|
|
|
|
data_set
|
|
|
|
|
"""
|
|
|
|
|
label_dict = get_label_dict()
|
|
|
|
|
data_set = list()
|
|
|
|
|
download_data_if_not_yet()
|
|
|
|
|
words_freq = nltk.FreqDist(w.lower() for w in movie_reviews.words())
|
|
|
|
|
data_set = [([words_freq[word.lower()]
|
|
|
|
|
for word in movie_reviews.words(fileid)],
|
|
|
|
|
label_dict[category])
|
|
|
|
|
for category in movie_reviews.categories()
|
|
|
|
|
for fileid in movie_reviews.fileids(category)]
|
|
|
|
|
words_ids = dict(get_word_dict())
|
|
|
|
|
for sample_file in sort_files():
|
|
|
|
|
words_list = list()
|
|
|
|
|
category = 0 if 'neg' in sample_file else 1
|
|
|
|
|
for word in movie_reviews.words(sample_file):
|
|
|
|
|
words_list.append(words_ids[word.lower()])
|
|
|
|
|
data_set.append((words_list, category))
|
|
|
|
|
return data_set
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -98,9 +114,9 @@ def reader_creator(data):
|
|
|
|
|
train data set or test data set
|
|
|
|
|
"""
|
|
|
|
|
for each in data:
|
|
|
|
|
sentences = np.array(each[0], dtype=np.int32)
|
|
|
|
|
labels = np.array(each[1], dtype=np.int8)
|
|
|
|
|
yield sentences, labels
|
|
|
|
|
list_of_int = np.array(each[0], dtype=np.int32)
|
|
|
|
|
label = each[1]
|
|
|
|
|
yield list_of_int, label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train():
|