Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into op_transpose
Before Width: | Height: | Size: 54 KiB After Width: | Height: | Size: 58 KiB |
Before Width: | Height: | Size: 46 KiB After Width: | Height: | Size: 50 KiB |
Before Width: | Height: | Size: 28 KiB After Width: | Height: | Size: 32 KiB |
@ -0,0 +1,124 @@
|
||||
## Background
|
||||
PaddlePaddle divides the description of neural network computation graph into two stages: compile time and runtime.
|
||||
|
||||
PaddlePaddle use proto message to describe compile time graph for
|
||||
|
||||
1. Computation graph should be able to be saved to a file.
|
||||
1. In distributed training, the graph will be serialized and send to multiple workers.
|
||||
|
||||
The computation graph is constructed by Data Node and Operation Node. The concept to represent them is in the table below.
|
||||
|
||||
| |compile time|runtime|
|
||||
|---|---|---|
|
||||
|Data|VarDesc(proto)|Variable(cpp)|
|
||||
|Operation|OpDesc(proto)|Operator(cpp)|
|
||||
|
||||
|
||||
## Definition of VarDesc
|
||||
|
||||
A VarDesc should have a name and value, in PaddlePaddle, the value will always be a tensor. Since we use LoDTensor most of the time. We add a LoDTesnorDesc to represent it.
|
||||
|
||||
```proto
|
||||
message VarDesc {
|
||||
required string name = 1;
|
||||
optional LoDTensorDesc lod_tensor = 2;
|
||||
}
|
||||
```
|
||||
|
||||
## Definition of LodTensorDesc
|
||||
|
||||
```proto
|
||||
enum DataType {
|
||||
BOOL = 0;
|
||||
INT16 = 1;
|
||||
INT32 = 2;
|
||||
INT64 = 3;
|
||||
FP16 = 4;
|
||||
FP32 = 5;
|
||||
FP64 = 6;
|
||||
}
|
||||
|
||||
message LoDTensorDesc {
|
||||
required DataType data_type = 1;
|
||||
repeated int32 dims = 2; // [UNK, 640, 480] is saved as [-1, 640, 480]
|
||||
optional int32 lod_level = 3 [default=0];
|
||||
}
|
||||
```
|
||||
|
||||
## Definition of Variable in Python
|
||||
|
||||
In Python API, layer will take Variable as Input, and return Variable as Output. There should be a class `Variable` in python to help create and manage Variable.
|
||||
|
||||
```python
|
||||
image = Variable(dims=[-1, 640, 480])
|
||||
# fc1 and fc2 are both Variable
|
||||
fc1 = layer.fc(input=image, output_size=10)
|
||||
fc2 = layer.fc(input=fc1, output_size=20)
|
||||
```
|
||||
### what should class `Variable` Have
|
||||
1. `name`.a name of string type is used to mark the value of the Variable.
|
||||
1. `initializer`. Since our Tensor does not have value. we will always use some Operator to fullfill it when run. So we should have a initialize method to help add the init operator.
|
||||
1. `operator`. Variable should record which operator produce itself. The reaon is:
|
||||
- we use pd.eval(targets=[var1, var2]) to run the related ops to get the value of var1 and var2. var.op is used to trace the dependency of the current variable.
|
||||
|
||||
In PaddlePaddle, we use Block to describe Computation Graph, so in the code we will use Block but not Graph.
|
||||
|
||||
```python
|
||||
import VarDesc
|
||||
import LoDTensorDesc
|
||||
import framework
|
||||
|
||||
def AddInitialOperator(variable, initializer):
|
||||
# add an initialize Operator to block to init this Variable
|
||||
|
||||
class Variable(object):
|
||||
def __init__(self, name, dims, type, initializer):
|
||||
self._block = get_default_block()
|
||||
self._name = name
|
||||
self.op = None
|
||||
|
||||
tensor_desc = LoDTensorDesc(data_type=type, dims=dims)
|
||||
_var_desc = VarDesc(name=name, lod_tensor=tensor_desc)
|
||||
self._var = framework.CreateVar(_var_desc)
|
||||
self._block.add_var(self)
|
||||
|
||||
# add initial op according to initializer
|
||||
if initializer is not None:
|
||||
AddInitialOperator(self, initializer)
|
||||
|
||||
def dims(self):
|
||||
return self._var.dims()
|
||||
|
||||
def data_type(self):
|
||||
return self._var.data_type()
|
||||
|
||||
def to_proto(self):
|
||||
pass
|
||||
```
|
||||
|
||||
Then we can use this Variable to create a fc layer in Python.
|
||||
|
||||
```python
|
||||
import paddle as pd
|
||||
|
||||
def flatten_size(X, num_flatten_dims):
|
||||
prod = 1 # of last num_flatten_dims
|
||||
for i in xrange(num_flatten_dims):
|
||||
prod = prod * X.dims[-i-1]
|
||||
return prod
|
||||
|
||||
def layer.fc(X, output_size, num_flatten_dims):
|
||||
W = Variable(pd.random_uniform(), type=FP32, dims=[flatten_size(X, num_flatten_dims), output_size])
|
||||
b = Variable(pd.random_uniform(), type=FP32, dims=[output_size])
|
||||
out = Variable(type=FP32)
|
||||
y = operator.fc(X, W, b, output=out) # fc will put fc op input into out
|
||||
pd.InferShape(y)
|
||||
return out
|
||||
|
||||
x = Variable(dims=[-1, 640, 480])
|
||||
y = layer.fc(x, output_size=100)
|
||||
z = layer.fc(y, output_size=200)
|
||||
|
||||
paddle.eval(targets=[z], ...)
|
||||
print(z)
|
||||
```
|
Before Width: | Height: | Size: 28 KiB After Width: | Height: | Size: 24 KiB |