Adding Adadelta optimization operator (#4576)
* Adding Adadelta optimization operator * Making inputs and outputs conform to naming convention * Removing type alias from header files * Fixing Adadelta documentation in comments * Addressing code review feedbackrevert-4814-Add_sequence_project_op
parent
1172f24929
commit
828c5b3e1d
@ -0,0 +1,115 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/adadelta_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class AdadeltaOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
||||
PADDLE_ENFORCE(ctx->HasInput("Param"),
|
||||
"Input(Param) of AdadeltaOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("Grad"),
|
||||
"Input(Grad) of AdadeltaOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("AvgSquaredGrad"),
|
||||
"Input(AvgSquaredGrad) of AdadeltaOp should not be null.");
|
||||
PADDLE_ENFORCE(ctx->HasInput("AvgSquaredUpdate"),
|
||||
"Input(AvgSquaredUpdate) of AdadeltaOp should not be null.");
|
||||
|
||||
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
|
||||
"Output(ParamOut) of AdadeltaOp should not be null.");
|
||||
PADDLE_ENFORCE(
|
||||
ctx->HasOutput("AvgSquaredGradOut"),
|
||||
"Output(AvgSquaredGradOut) of AdadeltaOp should not be null.");
|
||||
PADDLE_ENFORCE(
|
||||
ctx->HasOutput("AvgSquaredUpdateOut"),
|
||||
"Output(AvgSquaredUpdateOut) of AdadeltaOp should not be null.");
|
||||
|
||||
auto param_dim = ctx->GetInputDim("Param");
|
||||
PADDLE_ENFORCE_EQ(
|
||||
param_dim, ctx->GetInputDim("Grad"),
|
||||
"param and grad input of AdadeltaOp should have same dimension");
|
||||
PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredGrad"),
|
||||
"Param and AvgSquaredGrad input of AdadeltaOp "
|
||||
"should have same dimension");
|
||||
PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredUpdate"),
|
||||
"Param and AvgSquaredUpdate input of AdadeltaOp "
|
||||
"should have same dimension");
|
||||
|
||||
ctx->SetOutputDim("ParamOut", param_dim);
|
||||
ctx->SetOutputDim("AvgSquaredGradOut", param_dim);
|
||||
ctx->SetOutputDim("AvgSquaredUpdateOut", param_dim);
|
||||
}
|
||||
};
|
||||
|
||||
class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
AdadeltaOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("Param", "(Tensor) Input parameter");
|
||||
AddInput("Grad", "(Tensor) Input gradient");
|
||||
AddInput("AvgSquaredGrad",
|
||||
"(Tensor) Input expectation of squared gradient");
|
||||
AddInput("AvgSquaredUpdate",
|
||||
"(Tensor) Input expectation of squared parameter updates");
|
||||
|
||||
AddOutput("ParamOut", "(Tensor) Output parameter");
|
||||
AddOutput("AvgSquaredGradOut",
|
||||
"(Tensor) Output expectation of squared gradient");
|
||||
AddOutput("AvgSquaredUpdateOut",
|
||||
"(Tensor) Output expectation of squared parameter updates");
|
||||
|
||||
AddAttr<float>("rho",
|
||||
"(float, default 0.95) Exponential decay rate "
|
||||
"for squared gradients.")
|
||||
.SetDefault(0.95f);
|
||||
AddAttr<float>("epsilon",
|
||||
"(float, default 1.0e-6) Constant for "
|
||||
"numerical stability")
|
||||
.SetDefault(1.0e-6f);
|
||||
AddComment(R"DOC(
|
||||
Adadelta Updates Operator.
|
||||
|
||||
This implements the Adadelta optimizer[1]. Adadelta is a per-dimension
|
||||
adaptive learning rate method for gradient descent.
|
||||
|
||||
Adadelta updates:
|
||||
|
||||
avg_squared_grad_out = rho * avg_squared_grad + (1 - rho) * grad * grad
|
||||
param_update = - sqrt((avg_squared_update + epsilon) /
|
||||
(avg_squared_grad_out + epsilon)) * grad
|
||||
avg_squared_update_out = rho * avg_squared_update + (1 - rho) * param_update**2
|
||||
param_out = param + param_update
|
||||
|
||||
References:
|
||||
[1] ADADELTA: An Adaptive Learning Rate Method
|
||||
https://arxiv.org/abs/1212.5701
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_WITHOUT_GRADIENT(adadelta, ops::AdadeltaOp, ops::AdadeltaOpMaker);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
adadelta, ops::AdadeltaOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,20 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/adadelta_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
adadelta, ops::AdadeltaOpKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,69 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename Place, typename T>
|
||||
class AdadeltaOpKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
|
||||
auto avg_squared_grad_out_tensor =
|
||||
ctx.Output<framework::Tensor>("AvgSquaredGradOut");
|
||||
auto avg_squared_update_out_tensor =
|
||||
ctx.Output<framework::Tensor>("AvgSquaredUpdateOut");
|
||||
|
||||
param_out_tensor->mutable_data<T>(ctx.GetPlace());
|
||||
avg_squared_grad_out_tensor->mutable_data<T>(ctx.GetPlace());
|
||||
avg_squared_update_out_tensor->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
float rho = ctx.Attr<float>("rho");
|
||||
float epsilon = ctx.Attr<float>("epsilon");
|
||||
|
||||
auto param = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("Param"));
|
||||
auto grad = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("Grad"));
|
||||
// Squared gradient accumulator
|
||||
auto avg_squared_grad = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("AvgSquaredGrad"));
|
||||
// Squared updates accumulator
|
||||
auto avg_squared_update = framework::EigenVector<T>::Flatten(
|
||||
*ctx.Input<framework::Tensor>("AvgSquaredUpdate"));
|
||||
auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
|
||||
auto avg_squared_grad_out =
|
||||
framework::EigenVector<T>::Flatten(*avg_squared_grad_out_tensor);
|
||||
auto avg_squared_update_out =
|
||||
framework::EigenVector<T>::Flatten(*avg_squared_update_out_tensor);
|
||||
auto place = ctx.GetEigenDevice<Place>();
|
||||
|
||||
avg_squared_grad_out.device(place) =
|
||||
rho * avg_squared_grad + (1 - rho) * grad.square();
|
||||
auto update =
|
||||
-((avg_squared_update + epsilon) / (avg_squared_grad_out + epsilon))
|
||||
.sqrt() *
|
||||
grad;
|
||||
avg_squared_update_out.device(place) =
|
||||
rho * avg_squared_update + (1 - rho) * update.square();
|
||||
param_out.device(place) = param + update;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,96 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestAdadeltaOp1(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "adadelta"
|
||||
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
# The squared gradient is positive
|
||||
avg_squared_grad = np.random.random((102, 105)).astype("float32")
|
||||
# The squared update is positive
|
||||
avg_squared_update = np.random.random((102, 105)).astype("float32")
|
||||
|
||||
rho = 0.95
|
||||
epsilon = 1e-6
|
||||
|
||||
self.inputs = {
|
||||
'Param': param,
|
||||
'Grad': grad,
|
||||
'AvgSquaredGrad': avg_squared_grad,
|
||||
'AvgSquaredUpdate': avg_squared_update
|
||||
}
|
||||
|
||||
self.attrs = {'rho': rho, 'epsilon': epsilon}
|
||||
|
||||
avg_squared_grad_out = rho * avg_squared_grad + \
|
||||
(1 - rho) * np.square(grad)
|
||||
update = -np.multiply(
|
||||
np.sqrt(
|
||||
np.divide(avg_squared_update + epsilon, avg_squared_grad_out +
|
||||
epsilon)), grad)
|
||||
|
||||
avg_squared_update_out = rho * avg_squared_update + \
|
||||
(1 - rho) * np.square(update)
|
||||
|
||||
param_out = param + update
|
||||
|
||||
self.outputs = {
|
||||
'ParamOut': param_out,
|
||||
'AvgSquaredGradOut': avg_squared_grad_out,
|
||||
'AvgSquaredUpdateOut': avg_squared_update_out
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
class TestAdadeltaOp2(OpTest):
|
||||
'''Test Adadelta op with default attribute values
|
||||
'''
|
||||
|
||||
def setUp(self):
|
||||
self.op_type = "adadelta"
|
||||
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
|
||||
# The squared gradient is positive
|
||||
avg_squared_grad = np.random.random((102, 105)).astype("float32")
|
||||
# The squared update is positive
|
||||
avg_squared_update = np.random.random((102, 105)).astype("float32")
|
||||
|
||||
rho = 0.95
|
||||
epsilon = 1e-6
|
||||
|
||||
self.inputs = {
|
||||
'Param': param,
|
||||
'Grad': grad,
|
||||
'AvgSquaredGrad': avg_squared_grad,
|
||||
'AvgSquaredUpdate': avg_squared_update
|
||||
}
|
||||
|
||||
avg_squared_grad_out = rho * avg_squared_grad + \
|
||||
(1 - rho) * np.square(grad)
|
||||
update = -np.multiply(
|
||||
np.sqrt(
|
||||
np.divide(avg_squared_update + epsilon, avg_squared_grad_out +
|
||||
epsilon)), grad)
|
||||
|
||||
avg_squared_update_out = rho * avg_squared_update + \
|
||||
(1 - rho) * np.square(update)
|
||||
|
||||
param_out = param + update
|
||||
|
||||
self.outputs = {
|
||||
'ParamOut': param_out,
|
||||
'AvgSquaredGradOut': avg_squared_grad_out,
|
||||
'AvgSquaredUpdateOut': avg_squared_update_out
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue