Merge pull request #15610 from wzzju/quantization_inference_passes

Quantization inference passes
revert-15774-anakin_subgraph_engine
Zhen Wang 6 years ago committed by GitHub
commit 832bd720d1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -13,10 +13,12 @@
// limitations under the License.
#include "paddle/fluid/pybind/ir.h"
#include <algorithm>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/op_desc.h"
@ -27,6 +29,10 @@ namespace py = pybind11;
using paddle::framework::ir::Graph;
using paddle::framework::ir::Node;
using paddle::framework::ir::GraphSafeRemoveNodes;
using paddle::framework::ir::HasCircle;
using paddle::framework::ir::GraphNum;
using paddle::framework::ir::TopologySortOperations;
using paddle::framework::ir::BuildOperationAdjList;
using paddle::framework::OpDesc;
using paddle::framework::ProgramDesc;
using paddle::framework::VarDesc;
@ -36,6 +42,12 @@ namespace paddle {
namespace pybind {
void BindGraph(py::module *m) {
m->def("graph_safe_remove_nodes", GraphSafeRemoveNodes);
m->def("has_circle", HasCircle);
m->def("graph_num", GraphNum);
m->def("topology_sort", TopologySortOperations,
return_value_policy::reference);
m->def("build_adjacency_list", BuildOperationAdjList,
return_value_policy::reference);
py::class_<Graph, std::shared_ptr<Graph>>(
*m, "Graph",
"The graph is a Directed Acyclic Single Static Assignment Graph, see "
@ -46,7 +58,6 @@ void BindGraph(py::module *m) {
.def("get_float", &Graph::Get<float>)
.def("get_double", &Graph::Get<double>)
.def("get_string", &Graph::Get<std::string>)
.def("get_program", &Graph::Get<ProgramDesc>)
.def("get_marked_nodes", &Graph::Get<std::unordered_set<const Node *>>)
.def("set", [](Graph &self, const std::string &attr_name,
int attr) { return self.Set(attr_name, new int(attr)); })
@ -63,11 +74,6 @@ void BindGraph(py::module *m) {
[](Graph &self, const std::string &attr_name, double attr) {
return self.Set(attr_name, new double(attr));
})
.def("set",
[](Graph &self, const std::string &attr_name,
const ProgramDesc &attr) {
return self.Set(attr_name, new ProgramDesc(attr));
})
.def("set",
[](Graph &self, const std::string &attr_name,
const std::unordered_set<const Node *> &attr) {
@ -108,42 +114,42 @@ void BindNode(py::module *m) {
.def("is_op", &Node::IsOp)
.def("is_var", &Node::IsVar)
.def("is_ctrl_var", &Node::IsCtrlVar)
.def("clear_inputs", [](Node &self) { self.inputs.clear(); })
.def("inputs_remove",
[](Node &self, int node_id) {
for (auto it = self.inputs.begin(); it != self.inputs.end();
it++) {
if ((*it)->id() == node_id) {
self.inputs.erase(it);
}
auto pos = std::find_if(
self.inputs.begin(), self.inputs.end(),
[&node_id](const Node *n) { return n->id() == node_id; });
if (pos != self.inputs.end()) {
self.inputs.erase(pos);
}
})
.def("inputs_remove",
[](Node &self, Node &node) {
for (auto it = self.inputs.begin(); it != self.inputs.end();
it++) {
if (*it == &node) {
self.inputs.erase(it);
}
auto pos =
std::find(self.inputs.begin(), self.inputs.end(), &node);
if (pos != self.inputs.end()) {
self.inputs.erase(pos);
}
})
.def("inputs_append",
[](Node &self, Node &node) { self.inputs.push_back(&node); })
.def("clear_outputs", [](Node &self) { self.outputs.clear(); })
.def("outputs_remove",
[](Node &self, int node_id) {
for (auto it = self.outputs.begin(); it != self.outputs.end();
it++) {
if ((*it)->id() == node_id) {
self.outputs.erase(it);
}
auto pos = std::find_if(
self.outputs.begin(), self.outputs.end(),
[&node_id](const Node *n) { return n->id() == node_id; });
if (pos != self.outputs.end()) {
self.outputs.erase(pos);
}
})
.def("outputs_remove",
[](Node &self, Node &node) {
for (auto it = self.outputs.begin(); it != self.outputs.end();
it++) {
if (*it == &node) {
self.outputs.erase(it);
}
auto pos =
std::find(self.outputs.begin(), self.outputs.end(), &node);
if (pos != self.outputs.end()) {
self.outputs.erase(pos);
}
})
.def("outputs_append",

@ -829,8 +829,7 @@ All parameter, weight, gradient are variables in Paddle.
m.def("disable_profiler", platform::DisableProfiler);
m.def("is_profiler_enabled", platform::IsProfileEnabled);
m.def("reset_profiler", platform::ResetProfiler);
m.def("get_pass", [](const py::bytes &binary_str) {
std::string pass_type(binary_str);
m.def("get_pass", [](const std::string &pass_type) {
auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
return std::shared_ptr<framework::ir::Pass>(std::move(pass));
});
@ -838,10 +837,9 @@ All parameter, weight, gradient are variables in Paddle.
py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
pass.def(py::init())
.def("has", &ir::Pass::Has)
.def("set",
[](ir::Pass &self, const std::string &attr_name,
const ProgramDesc &attr) {
return self.Set(attr_name, new ProgramDesc(attr));
.def("set_not_owned",
[](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
self.SetNotOwned<ProgramDesc>(attr_name, &attr);
})
.def(
"set",
@ -850,7 +848,6 @@ All parameter, weight, gradient are variables in Paddle.
})
.def("set", [](ir::Pass &self, const std::string &name,
int val) { self.Set<const int>(name, new int(val)); })
.def("get_program", &ir::Pass::Get<ProgramDesc>)
.def("type", &ir::Pass::Type)
.def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
std::unique_ptr<ir::Graph> origin_graph(graph.get());

@ -64,6 +64,7 @@ if (WITH_TESTING)
add_subdirectory(paddle/dataset/tests)
add_subdirectory(paddle/fluid/tests)
add_subdirectory(paddle/fluid/contrib/tests)
add_subdirectory(paddle/fluid/contrib/slim/tests)
endif()
install(DIRECTORY ${PADDLE_PYTHON_PACKAGE_DIR}
DESTINATION opt/paddle/share/wheels

@ -0,0 +1,6 @@
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()

@ -1,5 +1,5 @@
version: 1.0
include: ["./unitest/configs/pruners.yaml", "./unitest/configs/pruners_0.yaml"]
include: ["./configs/pruners.yaml", "./configs/pruners_0.yaml"]
pruners:
pruner_1:
class: 'RatioPruner'

@ -18,7 +18,7 @@ import unittest
class TestFactory(unittest.TestCase):
def test_parse(self):
factory = ConfigFactory('./unitest/configs/config.yaml')
factory = ConfigFactory('./configs/config.yaml')
pruner = factory.instance('pruner_1')
self.assertEquals(pruner.ratios['conv1_1.w'], 0.3)

@ -0,0 +1,80 @@
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
from __future__ import print_function
import unittest
import paddle.fluid as fluid
import six
from paddle.fluid.framework import IrGraph
from paddle.fluid import core
def residual_block(num):
def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
act='relu',
bias_attr=False):
tmp = fluid.layers.conv2d(
input=input,
filter_size=filter_size,
num_filters=ch_out,
stride=stride,
padding=padding,
act=None,
bias_attr=bias_attr)
return fluid.layers.batch_norm(input=tmp, act=act)
data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = data
for _ in six.moves.xrange(num):
conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True)
short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None)
hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
fc = fluid.layers.fc(input=hidden, size=10)
loss = fluid.layers.cross_entropy(input=fc, label=label)
loss = fluid.layers.mean(loss)
return loss
class TestGraph(unittest.TestCase):
def test_graph_functions(self):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
loss = residual_block(2)
opt = fluid.optimizer.Adam(learning_rate=0.001)
opt.minimize(loss)
graph = IrGraph(core.Graph(main.desc), for_test=False)
marked_nodes = set()
for op in graph.all_ops():
if op.name().find('conv2d') > -1:
marked_nodes.add(op)
graph.draw('.', 'residual', marked_nodes)
self.assertFalse(graph.has_circle())
self.assertEqual(graph.graph_num(), 1)
nodes = graph.topology_sort()
self.assertEqual(len(nodes), len(graph.all_ops()))
nodes_map = graph.build_adjacency_list()
self.assertEqual(len(nodes_map), len(graph.all_ops()))
nodes_num = len(graph.all_nodes())
graph.safe_remove_nodes(marked_nodes)
self.assertEqual(len(graph.all_nodes()), nodes_num - len(marked_nodes))
if __name__ == '__main__':
unittest.main()

@ -1,175 +0,0 @@
# copyright (c) 2018 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import random
import numpy as np
import paddle.fluid as fluid
import six
from paddle.fluid.framework import Program
from paddle.fluid.framework import IrGraph
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
from paddle.fluid import core
def linear_fc(num):
data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = data
for _ in six.moves.xrange(num):
hidden = fluid.layers.fc(hidden, size=128, act='relu')
loss = fluid.layers.cross_entropy(input=hidden, label=label)
loss = fluid.layers.mean(loss)
return loss
def residual_block(num):
def conv_bn_layer(input,
ch_out,
filter_size,
stride,
padding,
act='relu',
bias_attr=False):
tmp = fluid.layers.conv2d(
input=input,
filter_size=filter_size,
num_filters=ch_out,
stride=stride,
padding=padding,
act=None,
bias_attr=bias_attr)
return fluid.layers.batch_norm(input=tmp, act=act)
data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = data
for _ in six.moves.xrange(num):
conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True)
short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None)
hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu')
fc = fluid.layers.fc(input=hidden, size=10)
loss = fluid.layers.cross_entropy(input=fc, label=label)
loss = fluid.layers.mean(loss)
return loss
class TestQuantizationTransformPass(unittest.TestCase):
def setUp(self):
self.quantizable_op_and_inputs = {
'conv2d': ['Input', 'Filter'],
'depthwise_conv2d': ['Input', 'Filter'],
'mul': ['X', 'Y']
}
self.quantizable_grad_op_inputs = {
'conv2d_grad': ['Input', 'Filter'],
'depthwise_conv2d_grad': ['Input', 'Filter'],
'mul_grad': ['X', 'Y']
}
def check_program(self, transform_pass, program):
quantized_ops = set()
for block in program.blocks:
for op in block.ops:
# check forward
if op.type in self.quantizable_op_and_inputs:
for arg_name in op.input_arg_names:
self.assertTrue(
arg_name.endswith('.quantized.dequantized'))
quantized_ops.add(arg_name)
for op in block.ops:
# check backward
if op.type in self.quantizable_grad_op_inputs:
for pname in self.quantizable_grad_op_inputs[op.type]:
arg_name = op.input(pname)[0]
self.assertTrue(
arg_name.endswith('.quantized.dequantized'))
self.assertTrue(arg_name in quantized_ops)
def linear_fc_quant(self, quant_type):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
loss = linear_fc(3)
opt = fluid.optimizer.Adam(learning_rate=0.001)
opt.minimize(loss)
exe = fluid.Executor(fluid.CPUPlace())
graph = IrGraph(core.Graph(main.desc), for_test=False)
transform_pass = QuantizationTransformPass(
scope=fluid.global_scope(),
program_exe=exe,
activation_quantize_type=quant_type)
transform_pass.apply(graph)
marked_nodes = set()
for op in graph.all_ops():
if op.name().find('quantize') > -1:
marked_nodes.add(op)
graph.draw('.', 'quantize_fc_' + quant_type, marked_nodes)
program = graph.to_program()
self.check_program(transform_pass, program)
val_graph = IrGraph(core.Graph(program.desc), for_test=False)
val_marked_nodes = set()
for op in val_graph.all_ops():
if op.name().find('quantize') > -1:
val_marked_nodes.add(op)
val_graph.draw('.', 'val_fc_' + quant_type, val_marked_nodes)
def test_linear_fc_quant_abs_max(self):
self.act_quant_op_type = 'fake_quantize_abs_max'
self.linear_fc_quant('abs_max')
def test_linear_fc_quant_range_abs_max(self):
self.act_quant_op_type = 'fake_quantize_range_abs_max'
self.linear_fc_quant('range_abs_max')
def residual_block_quant(self, quant_type):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
loss = residual_block(2)
opt = fluid.optimizer.Adam(learning_rate=0.001)
opt.minimize(loss)
exe = fluid.Executor(fluid.CPUPlace())
graph = IrGraph(core.Graph(main.desc), for_test=False)
transform_pass = QuantizationTransformPass(
scope=fluid.global_scope(),
program_exe=exe,
activation_quantize_type=quant_type)
transform_pass.apply(graph)
marked_nodes = set()
for op in graph.all_ops():
if op.name().find('quantize') > -1:
marked_nodes.add(op)
graph.draw('.', 'quantize_residual_' + quant_type, marked_nodes)
program = graph.to_program()
self.check_program(transform_pass, program)
val_graph = IrGraph(core.Graph(program.desc), for_test=False)
val_marked_nodes = set()
for op in val_graph.all_ops():
if op.name().find('quantize') > -1:
val_marked_nodes.add(op)
val_graph.draw('.', 'val_residual_' + quant_type, val_marked_nodes)
def test_residual_block_abs_max(self):
self.act_quant_op_type = 'fake_quantize_abs_max'
self.residual_block_quant('abs_max')
def test_residual_block_range_abs_max(self):
self.act_quant_op_type = 'fake_quantize_range_abs_max'
self.residual_block_quant('range_abs_max')
if __name__ == '__main__':
unittest.main()

@ -204,9 +204,11 @@ class TestQuantizeTranspiler(unittest.TestCase):
build_program(test_program, startup, True)
test_program = test_program.clone(for_test=True)
quant_transpiler = QuantizeTranspiler()
quant_transpiler.training_transpile(main)
quant_transpiler.training_transpile(test_program)
quant_type = 'range_abs_max' # 'range_abs_max' or 'abs_max'
quant_transpiler = QuantizeTranspiler(
activation_quantize_type=quant_type)
quant_transpiler.training_transpile(main, startup)
quant_transpiler.training_transpile(test_program, startup)
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save