|
|
|
@ -74,14 +74,14 @@ The op functions is similar to how numpy.transpose works in python.
|
|
|
|
|
|
|
|
|
|
For example:
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
.. code-block:: text
|
|
|
|
|
|
|
|
|
|
input = numpy.arange(6).reshape((2,3))
|
|
|
|
|
|
|
|
|
|
the input is:
|
|
|
|
|
|
|
|
|
|
array([[0, 1, 2],
|
|
|
|
|
[3, 4, 5]])
|
|
|
|
|
[3, 4, 5]])
|
|
|
|
|
|
|
|
|
|
given axis is:
|
|
|
|
|
|
|
|
|
@ -92,8 +92,8 @@ For example:
|
|
|
|
|
then the output is:
|
|
|
|
|
|
|
|
|
|
array([[0, 3],
|
|
|
|
|
[1, 4],
|
|
|
|
|
[2, 5]])
|
|
|
|
|
[1, 4],
|
|
|
|
|
[2, 5]])
|
|
|
|
|
|
|
|
|
|
So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
|
|
|
|
|
the output tensor shape will be (N, H, W, C)
|
|
|
|
|