use pyreader to read data in dygraph mode (#17314)
* use pyreader to read data * add return_list to PyReader to support return value represented as listdependabot/pip/python/requests-2.20.0
parent
5436d66667
commit
841553e13f
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,84 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TestPyReader(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.batch_size = 32
|
||||
self.epoch_num = 2
|
||||
self.sample_num = 10
|
||||
|
||||
def test_returnlist(self):
|
||||
def reader_creator_random_image(height, width):
|
||||
def reader():
|
||||
for i in range(self.sample_num):
|
||||
yield np.random.uniform(
|
||||
low=0, high=255, size=[height, width]),
|
||||
|
||||
return reader
|
||||
|
||||
for return_list in [True, False]:
|
||||
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
||||
image = fluid.layers.data(
|
||||
name='image', shape=[784, 784], dtype='float32')
|
||||
reader = fluid.io.PyReader(
|
||||
feed_list=[image],
|
||||
capacity=4,
|
||||
iterable=True,
|
||||
return_list=return_list)
|
||||
|
||||
user_defined_reader = reader_creator_random_image(784, 784)
|
||||
reader.decorate_sample_list_generator(
|
||||
paddle.batch(
|
||||
user_defined_reader, batch_size=self.batch_size),
|
||||
fluid.core.CPUPlace())
|
||||
# definition of network is omitted
|
||||
executor = fluid.Executor(fluid.core.CPUPlace())
|
||||
executor.run(fluid.default_main_program())
|
||||
|
||||
for _ in range(self.epoch_num):
|
||||
for data in reader():
|
||||
if return_list:
|
||||
executor.run(feed={"image": data[0]})
|
||||
else:
|
||||
executor.run(feed=data)
|
||||
|
||||
with fluid.dygraph.guard():
|
||||
batch_py_reader = fluid.io.PyReader(
|
||||
feed_list=[
|
||||
np.empty(
|
||||
[self.batch_size, 784, 784], dtype='float32')
|
||||
],
|
||||
capacity=2,
|
||||
use_double_buffer=True,
|
||||
return_list=return_list)
|
||||
user_defined_reader = reader_creator_random_image(784, 784)
|
||||
batch_py_reader.decorate_sample_generator(
|
||||
user_defined_reader,
|
||||
batch_size=self.batch_size,
|
||||
places=fluid.core.CPUPlace())
|
||||
|
||||
for epoch in range(self.epoch_num):
|
||||
for _, data in enumerate(batch_py_reader()):
|
||||
# empty network
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue