Fix clone() bug. (#12583)
parent
7b03b18d16
commit
842fb021b3
@ -0,0 +1,196 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import argparse
|
||||
import time
|
||||
import math
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.profiler as profiler
|
||||
from paddle.fluid import core
|
||||
import unittest
|
||||
from multiprocessing import Process
|
||||
import os
|
||||
import signal
|
||||
import collections
|
||||
|
||||
SEED = 1
|
||||
DTYPE = "float32"
|
||||
paddle.dataset.mnist.fetch()
|
||||
|
||||
|
||||
# random seed must set before configuring the network.
|
||||
# fluid.default_startup_program().random_seed = SEED
|
||||
def cnn_model(data):
|
||||
conv_pool_1 = fluid.nets.simple_img_conv_pool(
|
||||
input=data,
|
||||
filter_size=5,
|
||||
num_filters=20,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
act="relu")
|
||||
conv_pool_2 = fluid.nets.simple_img_conv_pool(
|
||||
input=conv_pool_1,
|
||||
filter_size=5,
|
||||
num_filters=50,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
act="relu")
|
||||
|
||||
# TODO(dzhwinter) : refine the initializer and random seed settting
|
||||
SIZE = 10
|
||||
input_shape = conv_pool_2.shape
|
||||
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
|
||||
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
|
||||
|
||||
predict = fluid.layers.fc(
|
||||
input=conv_pool_2,
|
||||
size=SIZE,
|
||||
act="softmax",
|
||||
param_attr=fluid.param_attr.ParamAttr(
|
||||
initializer=fluid.initializer.NormalInitializer(
|
||||
loc=0.0, scale=scale)))
|
||||
return predict
|
||||
|
||||
|
||||
def get_model(batch_size):
|
||||
# Input data
|
||||
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
|
||||
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||
|
||||
# Train program
|
||||
predict = cnn_model(images)
|
||||
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
|
||||
# Evaluator
|
||||
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
|
||||
batch_acc = fluid.layers.accuracy(
|
||||
input=predict, label=label, total=batch_size_tensor)
|
||||
|
||||
inference_program = fluid.default_main_program().clone()
|
||||
# Optimization
|
||||
opt = fluid.optimizer.AdamOptimizer(
|
||||
learning_rate=0.001, beta1=0.9, beta2=0.999)
|
||||
|
||||
# Reader
|
||||
train_reader = paddle.batch(
|
||||
paddle.dataset.mnist.train(), batch_size=batch_size)
|
||||
test_reader = paddle.batch(
|
||||
paddle.dataset.mnist.test(), batch_size=batch_size)
|
||||
opt.minimize(avg_cost)
|
||||
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict
|
||||
|
||||
|
||||
def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers):
|
||||
t = fluid.DistributeTranspiler()
|
||||
t.transpile(
|
||||
trainer_id=trainer_id,
|
||||
program=main_program,
|
||||
pservers=pserver_endpoints,
|
||||
trainers=trainers)
|
||||
return t
|
||||
|
||||
|
||||
def operator_equal(a, b):
|
||||
for k, v in a.__dict__.iteritems():
|
||||
if isinstance(v, fluid.framework.Program) or \
|
||||
isinstance(v, fluid.framework.Block):
|
||||
continue
|
||||
|
||||
elif isinstance(v, core.OpDesc):
|
||||
if v.serialize_to_string() != b.__dict__[k].serialize_to_string():
|
||||
raise ValueError("In operator_equal not equal:{0}\n".format(k))
|
||||
|
||||
elif isinstance(v, collections.OrderedDict):
|
||||
v0 = sorted(v.iteritems(), key=lambda x: x[0])
|
||||
v1 = sorted(b.__dict__[k].iteritems(), key=lambda x: x[0])
|
||||
|
||||
if v0 != v1:
|
||||
raise ValueError("In operator_equal not equal:{0}\n".format(k))
|
||||
|
||||
elif (v != b.__dict__[k]):
|
||||
raise ValueError("In operator_equal not equal:{0}\n".format(k))
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def block_equal(a, b):
|
||||
for k, v in a.__dict__.iteritems():
|
||||
if isinstance(v, core.ProgramDesc) or isinstance(
|
||||
v, fluid.framework.Program) or isinstance(v, core.BlockDesc):
|
||||
continue
|
||||
|
||||
elif k == "ops":
|
||||
for i in range(0, len(a.ops)):
|
||||
if not operator_equal(a.ops[i], b.ops[i]):
|
||||
raise ValueError("In block_equal not equal:{0}\n".format(k))
|
||||
assert (len(a.ops) == len(b.ops))
|
||||
|
||||
elif isinstance(v, collections.OrderedDict):
|
||||
v0 = sorted(v.iteritems(), key=lambda x: x[0])
|
||||
v1 = sorted(b.__dict__[k].iteritems(), key=lambda x: x[0])
|
||||
|
||||
if v0 != v1:
|
||||
raise ValueError("In block_equal not equal:{0}\n".format(k))
|
||||
|
||||
elif (v != b.__dict__[k]):
|
||||
raise ValueError("In block_equal not equal:{0}\n".format(k))
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def program_equal(a, b):
|
||||
for k, v in a.__dict__.iteritems():
|
||||
if isinstance(v, core.ProgramDesc):
|
||||
continue
|
||||
|
||||
elif k == 'blocks':
|
||||
for i in range(0, len(a.blocks)):
|
||||
if not block_equal(a.blocks[i], b.blocks[i]):
|
||||
raise ValueError("In operator_equal not equal:{0}\n".format(
|
||||
k))
|
||||
return False
|
||||
assert (len(a.blocks) == len(b.blocks))
|
||||
|
||||
elif (v != b.__dict__[k]):
|
||||
raise ValueError("In program_equal not equal:{0}\n".format(k))
|
||||
|
||||
return True
|
||||
|
||||
|
||||
class TestDistMnist(unittest.TestCase):
|
||||
def test_desc_clone(self):
|
||||
get_model(batch_size=20)
|
||||
|
||||
pserver_endpoints = "127.0.0.1:9123"
|
||||
trainers = 1
|
||||
current_endpoint = "127.0.0.1:9123"
|
||||
t = get_transpiler(0,
|
||||
fluid.default_main_program(), pserver_endpoints,
|
||||
trainers)
|
||||
|
||||
pserver_prog = t.get_pserver_program(current_endpoint)
|
||||
startup_prog = t.get_startup_program(current_endpoint, pserver_prog)
|
||||
main = pserver_prog.clone()
|
||||
startup = startup_prog.clone()
|
||||
|
||||
self.assertTrue(program_equal(main, pserver_prog))
|
||||
self.assertTrue(program_equal(startup, startup_prog))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue