parent
2200ff5e3c
commit
84660653f8
@ -0,0 +1,99 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "Layer.h"
|
||||
#include "paddle/math/Matrix.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/**
|
||||
* A layer for L2 normalization in each row,
|
||||
* \f[
|
||||
* out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}}
|
||||
* \f]
|
||||
* where the size of \f$in\f$ is (batchSize x dataDim),
|
||||
* and the size of \f$out\f$ is (batchSize x dataDim).
|
||||
*/
|
||||
|
||||
class RowL2NormLayer : public Layer {
|
||||
protected:
|
||||
MatrixPtr inSquare_;
|
||||
MatrixPtr reciSqrtRowSquareSum_;
|
||||
MatrixPtr dotSum_;
|
||||
|
||||
public:
|
||||
explicit RowL2NormLayer(const LayerConfig& config) : Layer(config) {}
|
||||
|
||||
bool init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) override;
|
||||
|
||||
void forward(PassType passType) override;
|
||||
void backward(const UpdateCallback& callback = nullptr) override;
|
||||
};
|
||||
|
||||
REGISTER_LAYER(row_l2_norm, RowL2NormLayer);
|
||||
|
||||
bool RowL2NormLayer::init(const LayerMap& layerMap,
|
||||
const ParameterMap& parameterMap) {
|
||||
Layer::init(layerMap, parameterMap);
|
||||
|
||||
CHECK_EQ(inputLayers_.size(), 1U);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void RowL2NormLayer::forward(PassType passType) {
|
||||
Layer::forward(passType);
|
||||
|
||||
MatrixPtr inV = getInputValue(0);
|
||||
|
||||
/* malloc memory for the output_ if necessary */
|
||||
size_t batchSize = inV->getHeight();
|
||||
size_t dataDim = getSize();
|
||||
CHECK_EQ(dataDim, inV->getWidth());
|
||||
resetOutput(batchSize, dataDim);
|
||||
MatrixPtr outV = getOutputValue();
|
||||
|
||||
Matrix::resizeOrCreate(inSquare_, batchSize, dataDim, false, useGpu_);
|
||||
inV->square2(*inSquare_);
|
||||
Matrix::resizeOrCreate(reciSqrtRowSquareSum_, batchSize, 1, false, useGpu_);
|
||||
inSquare_->rowSum(*reciSqrtRowSquareSum_);
|
||||
reciSqrtRowSquareSum_->sqrt2(*reciSqrtRowSquareSum_);
|
||||
reciSqrtRowSquareSum_->scalarDiv(*reciSqrtRowSquareSum_, 1.0);
|
||||
outV->rowScale(0, *inV, *reciSqrtRowSquareSum_);
|
||||
}
|
||||
|
||||
void RowL2NormLayer::backward(const UpdateCallback& callback) {
|
||||
MatrixPtr inV = getInputValue(0);
|
||||
MatrixPtr inG = getInputGrad(0);
|
||||
MatrixPtr outV = getOutputValue();
|
||||
MatrixPtr outG = getOutputGrad();
|
||||
size_t batchSize = inV->getHeight();
|
||||
|
||||
// inG[ij] += outG[ij] / reciSqrtRowSquareSum
|
||||
// inG[ij] += -inV[ij] * reciSqrtRowSquareSum * reciSqrtRowSquareSum *
|
||||
// DotMul(outG[i], inV[i])
|
||||
if (inG) {
|
||||
Matrix::resizeOrCreate(dotSum_, batchSize, 1, false, useGpu_);
|
||||
dotSum_->zeroMem();
|
||||
dotSum_->rowDotMul(0, *outG, *outV);
|
||||
dotSum_->dotMul(*dotSum_, *reciSqrtRowSquareSum_);
|
||||
dotSum_->dotMul(*dotSum_, *reciSqrtRowSquareSum_);
|
||||
inSquare_->rowScale(0, *inV, *dotSum_);
|
||||
inG->sub(*inSquare_);
|
||||
inG->addRowScale(0, *outG, *reciSqrtRowSquareSum_);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue