|
|
|
@ -14,6 +14,7 @@
|
|
|
|
|
|
|
|
|
|
#pragma once
|
|
|
|
|
|
|
|
|
|
#include "glog/logging.h"
|
|
|
|
|
#include "paddle/framework/eigen.h"
|
|
|
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
|
|
|
|
|
@ -26,6 +27,10 @@ template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
|
|
|
|
typename IndexType = Eigen::DenseIndex>
|
|
|
|
|
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
|
|
|
|
|
|
|
|
|
template <typename T, int MajorType = Eigen::RowMajor,
|
|
|
|
|
typename IndexType = Eigen::DenseIndex>
|
|
|
|
|
using EigenScalar = framework::EigenScalar<T, MajorType, IndexType>;
|
|
|
|
|
|
|
|
|
|
struct SumFunctor {
|
|
|
|
|
template <typename Place, typename X, typename Y, typename Dim>
|
|
|
|
|
void operator()(const Place& place, X& x, Y& y, const Dim& dim) {
|
|
|
|
@ -133,10 +138,21 @@ class ReduceKernel : public framework::OpKernel<T> {
|
|
|
|
|
dims_vector.erase(dims_vector.begin() + dim);
|
|
|
|
|
dims = framework::make_ddim(dims_vector);
|
|
|
|
|
}
|
|
|
|
|
auto out = EigenTensor < T, D == 1 ? 1 : (D - 1) > ::From(*output, dims);
|
|
|
|
|
|
|
|
|
|
auto& place = context.GetEigenDevice<Place>();
|
|
|
|
|
Functor functor;
|
|
|
|
|
functor(place, x, out, reduce_dim);
|
|
|
|
|
|
|
|
|
|
if (D == 1) {
|
|
|
|
|
auto out = EigenScalar<T>::From(*output);
|
|
|
|
|
// auto out = EigenTensor<T, 1>::From(*output, dims);
|
|
|
|
|
VLOG(0) << "x dims : " << x.rank() << " out dims : " << out.rank();
|
|
|
|
|
functor(place, x, out, reduce_dim);
|
|
|
|
|
} else {
|
|
|
|
|
auto out = EigenTensor<T, (D - 1)>::From(*output, dims);
|
|
|
|
|
// VLOG(0) << "x dims : "<< x.dimensions().size() << " out dims : "
|
|
|
|
|
// << out.dimensions().size();
|
|
|
|
|
functor(place, x, out, reduce_dim);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
@ -186,13 +202,13 @@ class ReduceGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
auto x_reduce = EigenTensor<T, D>::From(*input1, dims);
|
|
|
|
|
auto x_reduce_grad = EigenTensor<T, D>::From(*input2, dims);
|
|
|
|
|
|
|
|
|
|
Eigen::array<int, D> braodcast_dim;
|
|
|
|
|
for (size_t i = 0; i < D; ++i) braodcast_dim[i] = 1;
|
|
|
|
|
braodcast_dim[dim] = input0->dims()[dim];
|
|
|
|
|
Eigen::array<int, D> broadcast_dim;
|
|
|
|
|
for (size_t i = 0; i < D; ++i) broadcast_dim[i] = 1;
|
|
|
|
|
broadcast_dim[dim] = input0->dims()[dim];
|
|
|
|
|
auto& place = context.GetEigenDevice<Place>();
|
|
|
|
|
Functor functor;
|
|
|
|
|
functor(place, x, x_reduce, x_grad, x_reduce_grad, braodcast_dim,
|
|
|
|
|
braodcast_dim[dim]);
|
|
|
|
|
functor(place, x, x_reduce, x_grad, x_reduce_grad, broadcast_dim,
|
|
|
|
|
broadcast_dim[dim]);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|