commit
84aea8a8a1
@ -0,0 +1,119 @@
|
||||
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/math/concat.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
namespace math {
|
||||
|
||||
/*
|
||||
* All tensors' dimension should be the same and the values of
|
||||
* each dimension are the same, except the axis dimension.
|
||||
*/
|
||||
template <typename T>
|
||||
class ConcatFunctor<platform::CPUDeviceContext, T> {
|
||||
public:
|
||||
void operator()(const platform::CPUDeviceContext& context,
|
||||
const std::vector<framework::Tensor>& input, const int axis,
|
||||
framework::Tensor* output) {
|
||||
// TODO(zcd): Add input data validity checking
|
||||
int num = input.size();
|
||||
|
||||
int rows = 1;
|
||||
auto dim_0 = input[0].dims();
|
||||
for (int i = 0; i < axis; ++i) {
|
||||
rows *= dim_0[i];
|
||||
}
|
||||
int out_rows = rows, out_cols = 0;
|
||||
|
||||
std::vector<int64_t> input_cols(input.size());
|
||||
for (int i = 0; i < num; ++i) {
|
||||
int t_cols = input[i].numel() / rows;
|
||||
out_cols += t_cols;
|
||||
input_cols[i] = t_cols;
|
||||
}
|
||||
auto& cpu_place = boost::get<platform::CPUPlace>(context.GetPlace());
|
||||
|
||||
// computation
|
||||
for (int k = 0; k < out_rows; ++k) {
|
||||
T* dst_ptr = output->data<T>() + k * out_cols;
|
||||
int col_idx = 0;
|
||||
for (int j = 0; j < num; ++j) {
|
||||
int col_len = input_cols[j];
|
||||
const T* src_prt = input[j].data<T>() + k * col_len;
|
||||
memory::Copy(cpu_place, dst_ptr + col_idx, cpu_place, src_prt,
|
||||
sizeof(T) * col_len);
|
||||
col_idx += col_len;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* All tensors' dimension should be the same and the values of
|
||||
* each dimension are the same, except the axis dimension.
|
||||
*/
|
||||
template <typename T>
|
||||
class ConcatGradFunctor<platform::CPUDeviceContext, T> {
|
||||
public:
|
||||
void operator()(const platform::CPUDeviceContext& context,
|
||||
const framework::Tensor& input, const int axis,
|
||||
std::vector<framework::Tensor>& outputs) {
|
||||
// TODO(zcd): Add input data validity checking
|
||||
int num = outputs.size();
|
||||
|
||||
int input_rows = 1;
|
||||
auto dim_0 = outputs[0].dims();
|
||||
for (int i = 0; i < axis; ++i) {
|
||||
input_rows *= dim_0[i];
|
||||
}
|
||||
int input_cols = 0;
|
||||
|
||||
std::vector<int64_t> output_cols(outputs.size());
|
||||
for (int i = 0; i < num; ++i) {
|
||||
int t_cols = outputs[i].numel() / input_rows;
|
||||
input_cols += t_cols;
|
||||
output_cols[i] = t_cols;
|
||||
}
|
||||
auto& cpu_place = boost::get<platform::CPUPlace>(context.GetPlace());
|
||||
|
||||
// computation
|
||||
for (int k = 0; k < input_rows; ++k) {
|
||||
const T* src_ptr = input.data<T>() + k * input_cols;
|
||||
int col_idx = 0;
|
||||
for (int j = 0; j < num; ++j) {
|
||||
int col_len = output_cols[j];
|
||||
T* dst_ptr = outputs[j].data<T>() + k * col_len;
|
||||
memory::Copy(cpu_place, dst_ptr, cpu_place, src_ptr + col_idx,
|
||||
sizeof(T) * col_len);
|
||||
col_idx += col_len;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template class ConcatFunctor<platform::CPUDeviceContext, int>;
|
||||
template class ConcatFunctor<platform::CPUDeviceContext, int64_t>;
|
||||
template class ConcatFunctor<platform::CPUDeviceContext, float>;
|
||||
template class ConcatFunctor<platform::CPUDeviceContext, double>;
|
||||
|
||||
template class ConcatGradFunctor<platform::CPUDeviceContext, int>;
|
||||
template class ConcatGradFunctor<platform::CPUDeviceContext, int64_t>;
|
||||
template class ConcatGradFunctor<platform::CPUDeviceContext, float>;
|
||||
template class ConcatGradFunctor<platform::CPUDeviceContext, double>;
|
||||
|
||||
} // namespace math
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,63 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/fluid/framework/tensor.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
namespace math {
|
||||
|
||||
/*
|
||||
* \brief Concatenate the input tensors along the dimension axis.
|
||||
* TODO(zcd): maybe it needs to be more detailed.
|
||||
* Examples:
|
||||
* Input[0] = [[1,2],[3,4]]
|
||||
* Input[1] = [[5,6]]
|
||||
* axis = 0
|
||||
*
|
||||
* Output = [[1,2],
|
||||
* [3,4],
|
||||
* [5,6]]
|
||||
*/
|
||||
template <typename DeviceContext, typename T>
|
||||
class ConcatFunctor {
|
||||
public:
|
||||
void operator()(const DeviceContext& context,
|
||||
const std::vector<framework::Tensor>& input, const int axis,
|
||||
framework::Tensor* output);
|
||||
};
|
||||
|
||||
/*
|
||||
* \brief Split the input tensors along the dimension axis into outputs.
|
||||
* TODO(zcd): maybe it needs to be more detailed.
|
||||
* Examples:
|
||||
* Input = [[1,2],
|
||||
* [3,4],
|
||||
* [5,6]]
|
||||
* axis = 0
|
||||
*
|
||||
* Output[0] = [[1,2],[3,4]]
|
||||
* Output[1] = [[5,6]]
|
||||
*/
|
||||
template <typename DeviceContext, typename T>
|
||||
class ConcatGradFunctor {
|
||||
public:
|
||||
void operator()(const DeviceContext& context, const framework::Tensor& input,
|
||||
const int axis, std::vector<framework::Tensor>& outputs);
|
||||
};
|
||||
|
||||
} // namespace math
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue