parent
823b63523f
commit
84b423a89a
@ -0,0 +1,2 @@
|
||||
add_test(NAME test_v2_api
|
||||
COMMAND bash ${PROJ_ROOT}/python/paddle/v2/tests/run_tests.sh ${PYTHON_EXECUTABLE})
|
@ -0,0 +1,36 @@
|
||||
#!/bin/bash
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
pushd `dirname $0` > /dev/null
|
||||
SCRIPTPATH=$PWD
|
||||
popd > /dev/null
|
||||
|
||||
cd $SCRIPTPATH
|
||||
|
||||
$1 -m pip install ../../../../paddle/dist/*.whl
|
||||
|
||||
test_list="test_data_feeder.py"
|
||||
|
||||
export PYTHONPATH=$PWD/../../../../python/
|
||||
|
||||
for fn in $test_list
|
||||
do
|
||||
echo "test $fn"
|
||||
$1 $fn
|
||||
if [ $? -ne 0 ]; then
|
||||
exit 1
|
||||
fi
|
||||
done
|
@ -0,0 +1,150 @@
|
||||
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
|
||||
import py_paddle.swig_paddle as api
|
||||
import numpy as np
|
||||
|
||||
from paddle.v2 import data_type
|
||||
from paddle.v2.data_feeder import DataFeeder
|
||||
|
||||
|
||||
class DataFeederTest(unittest.TestCase):
|
||||
def dense_reader(self, size):
|
||||
data = np.random.random(size)
|
||||
return data
|
||||
|
||||
def sparse_binary_reader(self, high, size_limit, non_empty=False):
|
||||
num = np.random.randint(size_limit) # num could be 0
|
||||
while non_empty and num == 0:
|
||||
num = np.random.randint(size_limit)
|
||||
return np.random.randint(high, size=num).tolist()
|
||||
|
||||
def test_dense_vector(self):
|
||||
def compare(input):
|
||||
feeder = DataFeeder([('image', data_type.dense_vector(784))],
|
||||
{'image': 0})
|
||||
arg = feeder([input])
|
||||
output = arg.getSlotValue(0).copyToNumpyMat()
|
||||
input = np.array(input, dtype='float32')
|
||||
self.assertAlmostEqual(input.all(), output.all())
|
||||
|
||||
# test numpy array
|
||||
batch_size = 32
|
||||
dim = 784
|
||||
data = []
|
||||
for i in xrange(batch_size):
|
||||
data.append(self.dense_reader(784))
|
||||
compare(data)
|
||||
|
||||
# test list
|
||||
data = []
|
||||
for i in xrange(batch_size):
|
||||
data.append(self.dense_reader(784).tolist())
|
||||
compare(data)
|
||||
|
||||
def test_sparse_binary(self):
|
||||
dim = 10000
|
||||
batch_size = 32
|
||||
data = []
|
||||
for i in xrange(batch_size):
|
||||
data.append([self.sparse_binary_reader(dim, 50)])
|
||||
feeder = DataFeeder([('input', data_type.sparse_binary_vector(dim))],
|
||||
{'input': 0})
|
||||
arg = feeder(data)
|
||||
output = arg.getSlotValue(0)
|
||||
assert isinstance(output, api.Matrix)
|
||||
for i in xrange(batch_size):
|
||||
self.assertEqual(output.getSparseRowCols(i), data[i][0])
|
||||
|
||||
def test_sparse(self):
|
||||
dim = 10000
|
||||
batch_size = 32
|
||||
v = []
|
||||
w = []
|
||||
data = []
|
||||
for dat in xrange(batch_size):
|
||||
a = self.sparse_binary_reader(dim, 40, non_empty=True)
|
||||
b = self.dense_reader(len(a)).tolist()
|
||||
v.append(a)
|
||||
w.append(b[0])
|
||||
data.append([zip(a, b)])
|
||||
|
||||
feeder = DataFeeder([('input', data_type.sparse_vector(dim))],
|
||||
{'input': 0})
|
||||
arg = feeder(data)
|
||||
output = arg.getSlotValue(0)
|
||||
assert isinstance(output, api.Matrix)
|
||||
for i in xrange(batch_size):
|
||||
self.assertEqual(output.getSparseRowCols(i), v[i])
|
||||
|
||||
def test_integer(self):
|
||||
dim = 100
|
||||
batch_size = 32
|
||||
index = []
|
||||
for i in xrange(batch_size):
|
||||
index.append([np.random.randint(dim)])
|
||||
feeder = DataFeeder([('input', data_type.integer_value(dim))],
|
||||
{'input': 0})
|
||||
arg = feeder(index)
|
||||
output = arg.getSlotIds(0).copyToNumpyArray()
|
||||
index = np.array(index, dtype='int')
|
||||
self.assertEqual(output.all(), index.flatten().all())
|
||||
|
||||
def test_multiple_slots(self):
|
||||
batch_size = 2
|
||||
data = []
|
||||
for i in xrange(batch_size):
|
||||
each_sample = []
|
||||
each_sample.append(np.random.randint(10)) # size of feature 2: 10
|
||||
each_sample.append(
|
||||
self.sparse_binary_reader(
|
||||
20000, 40, non_empty=True)) # size of feature 1: 20000
|
||||
each_sample.append(self.dense_reader(100)) # size of feature 0: 100
|
||||
data.append(each_sample)
|
||||
|
||||
# test multiple features
|
||||
data_types = [('fea0', data_type.dense_vector(100)),
|
||||
('fea1', data_type.sparse_binary_vector(20000)),
|
||||
('fea2', data_type.integer_value(10))]
|
||||
feeder = DataFeeder(data_types, {'fea0': 2, 'fea1': 1, 'fea2': 0})
|
||||
arg = feeder(data)
|
||||
output_dense = arg.getSlotValue(0).copyToNumpyMat()
|
||||
output_sparse = arg.getSlotValue(1)
|
||||
output_index = arg.getSlotIds(2).copyToNumpyArray()
|
||||
for i in xrange(batch_size):
|
||||
self.assertEqual(output_dense[i].all(), data[i][2].all())
|
||||
self.assertEqual(output_sparse.getSparseRowCols(i), data[i][1])
|
||||
self.assertEqual(output_index[i], data[i][0])
|
||||
|
||||
# reader returns 3 featreus, but only use 2 features
|
||||
data_types = [('fea0', data_type.dense_vector(100)),
|
||||
('fea2', data_type.integer_value(10))]
|
||||
feeder = DataFeeder(data_types, {'fea0': 2, 'fea2': 0})
|
||||
arg = feeder(data)
|
||||
output_dense = arg.getSlotValue(0).copyToNumpyMat()
|
||||
output_index = arg.getSlotIds(1).copyToNumpyArray()
|
||||
for i in xrange(batch_size):
|
||||
self.assertEqual(output_dense[i].all(), data[i][2].all())
|
||||
self.assertEqual(output_index[i], data[i][0])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
api.initPaddle("--use_gpu=0")
|
||||
unittest.main()
|
||||
|
||||
if __name__ == '__main__':
|
||||
api.initPaddle("--use_gpu=0")
|
||||
unittest.main()
|
Loading…
Reference in new issue