Solve the conflict of ops with the same name, test for CI. (#23573)
* solve the conflict of ops with the same name. test=developrevert-23830-2.0-beta
parent
795a0a9ab4
commit
84cd45f674
@ -0,0 +1,99 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import numpy as np
|
||||
import unittest
|
||||
|
||||
|
||||
class TestOpNameConflict(unittest.TestCase):
|
||||
def test_conflict(self):
|
||||
main = fluid.Program()
|
||||
startup = fluid.Program()
|
||||
with fluid.unique_name.guard():
|
||||
with fluid.program_guard(main, startup):
|
||||
x = fluid.data(name="x", shape=[1], dtype='float32')
|
||||
y = fluid.data(name="y", shape=[1], dtype='float32')
|
||||
z = fluid.data(name="z", shape=[1], dtype='float32')
|
||||
|
||||
m = fluid.layers.elementwise_add(x, y, name="add")
|
||||
n = fluid.layers.elementwise_add(y, z, name="add")
|
||||
p = m + n
|
||||
|
||||
place = fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
m_v, n_v, p_v = exe.run(feed={
|
||||
"x": np.ones((1), "float32") * 2,
|
||||
"y": np.ones((1), "float32") * 3,
|
||||
"z": np.ones((1), "float32") * 5
|
||||
},
|
||||
fetch_list=[m, n, p])
|
||||
|
||||
self.assertEqual(m_v[0], 5.0)
|
||||
self.assertEqual(n_v[0], 8.0)
|
||||
self.assertEqual(p_v[0], 13.0)
|
||||
|
||||
def test_layers(self):
|
||||
main = fluid.Program()
|
||||
startup = fluid.Program()
|
||||
with fluid.unique_name.guard():
|
||||
with fluid.program_guard(main, startup):
|
||||
place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda(
|
||||
) else fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
|
||||
data = fluid.data(
|
||||
name='data', shape=[None, 1, 2, 2], dtype='float32')
|
||||
tensor = fluid.data(
|
||||
name='tensor', shape=[None, 32, 64], dtype='float32')
|
||||
x = fluid.data(
|
||||
name='x', shape=[None, 1], dtype='float32', lod_level=1)
|
||||
|
||||
input_scale = fluid.layers.create_parameter(
|
||||
shape=[1],
|
||||
dtype="float32",
|
||||
default_initializer=fluid.initializer.Constant(2.0))
|
||||
input_bias = fluid.layers.create_parameter(
|
||||
shape=[1],
|
||||
dtype="float32",
|
||||
default_initializer=fluid.initializer.Constant(0.5))
|
||||
out_affine = fluid.layers.affine_channel(
|
||||
data, scale=input_scale, bias=input_bias)
|
||||
out_similarity = fluid.layers.similarity_focus(
|
||||
input=data, axis=1, indexes=[0])
|
||||
position_tensor = fluid.layers.add_position_encoding(
|
||||
input=tensor, alpha=1.0, beta=1.0)
|
||||
x_reversed = fluid.layers.sequence_reverse(x)
|
||||
|
||||
exe.run(fluid.default_startup_program())
|
||||
test_program = fluid.default_main_program().clone(for_test=True)
|
||||
|
||||
x_d = fluid.create_lod_tensor(
|
||||
np.array([[1.1], [2.2], [3.3], [4.4]]).astype('float32'),
|
||||
[[1, 3]], place)
|
||||
outs = exe.run(
|
||||
test_program,
|
||||
fetch_list=[
|
||||
out_affine, out_similarity, position_tensor, x_reversed
|
||||
],
|
||||
feed={
|
||||
data.name: np.ones([1, 1, 2, 2]).astype('float32'),
|
||||
tensor.name: np.ones([1, 32, 64]).astype('float32'),
|
||||
x.name: x_d
|
||||
},
|
||||
return_numpy=False)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue