test=developrevert-15774-anakin_subgraph_engine
parent
a6e3cd5eb7
commit
851ea04dec
@ -0,0 +1,72 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import paddle.fluid.core as core
|
||||
import paddle.fluid as fluid
|
||||
|
||||
|
||||
def check_if_mkldnn_primitives_exist_in_bwd(test_case, op_type, x, out,
|
||||
out_grad, x_grad):
|
||||
def __assert_close(tensor, np_array, msg, atol=1e-4):
|
||||
test_case.assertTrue(
|
||||
np.allclose(
|
||||
np.array(tensor), np_array, atol=atol), msg)
|
||||
|
||||
place = core.CPUPlace()
|
||||
|
||||
var_dict = {'x': x, 'out': out, 'out@GRAD': out_grad, 'x@GRAD': x_grad}
|
||||
var_names = list(var_dict.keys())
|
||||
ground_truth = {name: var_dict[name] for name in var_names}
|
||||
|
||||
program = fluid.Program()
|
||||
with fluid.program_guard(program):
|
||||
block = program.global_block()
|
||||
for name in ground_truth:
|
||||
block.create_var(
|
||||
name=name, dtype=np.float32, shape=ground_truth[name].shape)
|
||||
|
||||
op = block.append_op(
|
||||
type=op_type,
|
||||
inputs={'X': block.var('x'), },
|
||||
outputs={'Out': block.var('out')},
|
||||
attrs={'use_mkldnn': True})
|
||||
|
||||
# Generate backward op_desc
|
||||
grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(op.desc,
|
||||
set(), [])
|
||||
grad_op_desc = grad_op_desc_list[0]
|
||||
new_op_desc = block.desc.append_op()
|
||||
new_op_desc.copy_from(grad_op_desc)
|
||||
for var_name in grad_op_desc.output_arg_names():
|
||||
block.desc.var(var_name.encode('ascii'))
|
||||
grad_op_desc.infer_var_type(block.desc)
|
||||
grad_op_desc.infer_shape(block.desc)
|
||||
for arg in grad_op_desc.output_arg_names():
|
||||
grad_var = block.desc.find_var(arg.encode('ascii'))
|
||||
grad_var.set_dtype(core.VarDesc.VarType.FP32)
|
||||
|
||||
exe = fluid.Executor(place)
|
||||
|
||||
# Do at least 2 iterations
|
||||
for i in range(2):
|
||||
out = exe.run(
|
||||
program,
|
||||
feed={name: var_dict[name]
|
||||
for name in ['x', 'out@GRAD']},
|
||||
fetch_list=['x@GRAD', 'out'])
|
||||
|
||||
__assert_close(x_grad, out[0], 'x@GRAD')
|
@ -0,0 +1,57 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from paddle.fluid.tests.unittests.op_test import OpTest
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.tests.unittests.test_softmax_op import TestSoftmaxOp, stable_softmax
|
||||
from mkldnn_op_test import check_if_mkldnn_primitives_exist_in_bwd
|
||||
|
||||
|
||||
class TestSoftmaxMKLDNNOp(TestSoftmaxOp):
|
||||
def init_kernel_type(self):
|
||||
self.use_mkldnn = True
|
||||
|
||||
|
||||
class TestSoftmaxMKLDNNOp2(TestSoftmaxMKLDNNOp):
|
||||
def get_x_shape(self):
|
||||
return [2, 3, 4, 5]
|
||||
|
||||
|
||||
# Check if primitives already exist in backward
|
||||
class TestSoftmaxMKLDNNPrimitivesAlreadyExist(unittest.TestCase):
|
||||
def setUp(self):
|
||||
super(TestSoftmaxMKLDNNPrimitivesAlreadyExist, self).setUp()
|
||||
|
||||
np.random.seed(123)
|
||||
self.op_type = 'softmax'
|
||||
self.x = np.random.uniform(-1, 1, 2).astype(np.float32)
|
||||
self.out = stable_softmax(self.x)
|
||||
self.out_grad = np.random.random_sample(self.x.shape).astype(np.float32)
|
||||
self.x_grad = self.__softmax_bwd(self.out, self.out_grad)
|
||||
|
||||
# Softmax grad calculation
|
||||
def __softmax_bwd(self, out, out_grad):
|
||||
return out * (out_grad - np.dot(out, out_grad))
|
||||
|
||||
def test_check(self):
|
||||
check_if_mkldnn_primitives_exist_in_bwd(
|
||||
self, self.op_type, self.x, self.out, self.out_grad, self.x_grad)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue