parent
09d712d6ae
commit
86a679b0c4
@ -0,0 +1,107 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "FunctionTest.h"
|
||||
|
||||
namespace paddle {
|
||||
|
||||
TEST(ImageExpandForward, real) {
|
||||
for (size_t batchSize : {5, 32}) {
|
||||
for (size_t channels : {1, 5, 32}) {
|
||||
for (size_t inputHeight : {5, 33, 100}) {
|
||||
for (size_t inputWidth : {5, 32, 96}) {
|
||||
for (size_t block : {1, 3, 5}) {
|
||||
for (size_t stride : {1, 2}) {
|
||||
for (size_t padding : {0, 1}) {
|
||||
// init Test object
|
||||
std::vector<size_t> strides = {stride, stride};
|
||||
std::vector<size_t> paddings = {padding, padding};
|
||||
std::vector<size_t> blocks = {block, block};
|
||||
CpuGpuFuncCompare test("ImageExpand",
|
||||
FuncConfig()
|
||||
.set("strides", strides)
|
||||
.set("paddings", paddings)
|
||||
.set("blocks", blocks));
|
||||
|
||||
size_t outputHeight =
|
||||
1 +
|
||||
(inputHeight + 2 * padding - block + stride - 1) / stride;
|
||||
size_t outputWidth =
|
||||
1 +
|
||||
(inputWidth + 2 * padding - block + stride - 1) / stride;
|
||||
TensorShape inputShape =
|
||||
TensorShape({batchSize, channels, inputHeight, inputWidth});
|
||||
TensorShape outputShape =
|
||||
TensorShape({batchSize,
|
||||
outputHeight * outputWidth,
|
||||
channels * block * block});
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, inputShape));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, outputShape));
|
||||
// run Function
|
||||
test.run();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(ImageExpandBackward, real) {
|
||||
for (size_t batchSize : {5, 32}) {
|
||||
for (size_t channels : {1, 5, 32}) {
|
||||
for (size_t inputHeight : {5, 33, 100}) {
|
||||
for (size_t inputWidth : {5, 32, 96}) {
|
||||
for (size_t block : {1, 3, 5}) {
|
||||
for (size_t stride : {1, 2}) {
|
||||
for (size_t padding : {0, 1}) {
|
||||
// init Test object
|
||||
std::vector<size_t> strides = {stride, stride};
|
||||
std::vector<size_t> paddings = {padding, padding};
|
||||
std::vector<size_t> blocks = {block, block};
|
||||
CpuGpuFuncCompare test("ImageExpandGrad",
|
||||
FuncConfig()
|
||||
.set("strides", strides)
|
||||
.set("paddings", paddings)
|
||||
.set("blocks", blocks));
|
||||
|
||||
size_t outputHeight =
|
||||
1 +
|
||||
(inputHeight + 2 * padding - block + stride - 1) / stride;
|
||||
size_t outputWidth =
|
||||
1 +
|
||||
(inputWidth + 2 * padding - block + stride - 1) / stride;
|
||||
TensorShape inputShape =
|
||||
TensorShape({batchSize, channels, inputHeight, inputWidth});
|
||||
TensorShape outputShape =
|
||||
TensorShape({batchSize,
|
||||
outputHeight * outputWidth,
|
||||
channels * block * block});
|
||||
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, outputShape));
|
||||
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, inputShape),
|
||||
ADD_TO);
|
||||
// run Function
|
||||
test.run();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue