Add element-wise multiplication operator. (#3787)
Add element-wise multiplication operatorenforce_failed
parent
0f42e5649e
commit
8778957cfc
@ -0,0 +1,109 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/elementwise_mul_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
class ElementWiseMulOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null");
|
||||
auto x_dim = ctx.Input<Tensor>("X")->dims();
|
||||
auto y_dim = ctx.Input<Tensor>("Y")->dims();
|
||||
PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
|
||||
"Rank of first input must >= rank of second input.")
|
||||
ctx.Output<Tensor>("Out")->Resize(x_dim);
|
||||
}
|
||||
};
|
||||
|
||||
class ElementWiseMulOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
ElementWiseMulOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "The first input of elementwise mul op");
|
||||
AddInput("Y", "The second input of elementwise mul op");
|
||||
AddAttr<int>("axis",
|
||||
R"DOC(
|
||||
When shape(Y) does not equal shape(X),Y will be broadcasted
|
||||
to match the shape of X and axis should be dimension index Y in X
|
||||
)DOC")
|
||||
.SetDefault(-1)
|
||||
.EqualGreaterThan(-1);
|
||||
|
||||
AddOutput("Out", "The output of elementwise mul op");
|
||||
AddComment(R"DOC(
|
||||
Limited elementwise multiple operator.The equation is: Out = X ⊙ Y.
|
||||
1. The shape of Y should be same with X or
|
||||
2. Y's shape is a subset of X.
|
||||
Y will be broadcasted to match the shape of X and axis should be dimension index Y in X.
|
||||
example:
|
||||
shape(X) = (2, 3, 4, 5), shape(Y) = (,)
|
||||
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
|
||||
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
|
||||
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
|
||||
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class ElementWiseMulOpGrad : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null");
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) should not be null");
|
||||
|
||||
auto x_dims = ctx.Input<Tensor>("X")->dims();
|
||||
auto y_dims = ctx.Input<Tensor>("Y")->dims();
|
||||
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
|
||||
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||
auto *y_grad = ctx.Output<Tensor>(framework::GradVarName("Y"));
|
||||
|
||||
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
|
||||
"Rank of first input must >= rank of second input.")
|
||||
|
||||
if (x_grad) {
|
||||
x_grad->Resize(x_dims);
|
||||
}
|
||||
|
||||
if (y_grad) {
|
||||
y_grad->Resize(y_dims);
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(elementwise_mul, ops::ElementWiseMulOp, ops::ElementWiseMulOpMaker,
|
||||
elementwise_mul_grad, ops::ElementWiseMulOpGrad);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
elementwise_mul,
|
||||
ops::ElementWiseMulKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
elementwise_mul_grad,
|
||||
ops::ElementWiseMulGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,25 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/elementwise_mul_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
elementwise_mul,
|
||||
ops::ElementWiseMulKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
elementwise_mul_grad,
|
||||
ops::ElementWiseMulGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,185 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include <iostream>
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
#include "paddle/operators/math/math_function.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
/*
|
||||
* Out = X ⊙ Y
|
||||
* 1. shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
|
||||
* pre=2, n=3*4, post=5
|
||||
* 2. shape(X) = (2, 3, 4, 5), shape(Y) = (4,5)
|
||||
* pre=2*3, n=4*5, post=1
|
||||
*/
|
||||
|
||||
inline void get_mid_dims(const framework::DDim& x_dims,
|
||||
const framework::DDim& y_dims, const int axis,
|
||||
int& pre, int& n, int& post) {
|
||||
pre = 1;
|
||||
n = 1;
|
||||
post = 1;
|
||||
for (int i = 0; i < axis; ++i) {
|
||||
pre *= x_dims[i];
|
||||
}
|
||||
|
||||
for (int i = 0; i < y_dims.size(); ++i) {
|
||||
PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
|
||||
"Broadcast dimension mismatch.");
|
||||
n *= y_dims[i];
|
||||
}
|
||||
|
||||
for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
|
||||
post *= x_dims[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Place, typename T>
|
||||
class ElementWiseMulKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
auto* x = ctx.Input<Tensor>("X");
|
||||
auto* y = ctx.Input<Tensor>("Y");
|
||||
auto* z = ctx.Output<Tensor>("Out");
|
||||
z->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
||||
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
||||
auto z_e = framework::EigenVector<T>::Flatten(*z);
|
||||
|
||||
auto x_dims = x->dims();
|
||||
auto y_dims = y->dims();
|
||||
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
|
||||
"Rank of first input must >= rank of second input.")
|
||||
|
||||
if (x_dims == y_dims || product(y_dims) == 1) {
|
||||
z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_e;
|
||||
return;
|
||||
}
|
||||
|
||||
int axis = ctx.Attr<int>("axis");
|
||||
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
|
||||
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
|
||||
"Axis should be in range [0, x_dims)");
|
||||
|
||||
int pre, n, post;
|
||||
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
|
||||
if (post == 1) {
|
||||
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
|
||||
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
|
||||
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
|
||||
z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_bcast;
|
||||
return;
|
||||
} else {
|
||||
auto y_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
|
||||
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
|
||||
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
|
||||
z_e.device(ctx.GetEigenDevice<Place>()) = x_e * y_bcast;
|
||||
return;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class ElementWiseMulGradKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
auto* x = ctx.Input<Tensor>("X");
|
||||
auto* y = ctx.Input<Tensor>("Y");
|
||||
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||||
|
||||
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
||||
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
||||
auto dout_e = framework::EigenVector<T>::Flatten(*dout);
|
||||
|
||||
auto x_dims = x->dims();
|
||||
auto y_dims = y->dims();
|
||||
|
||||
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
|
||||
if (dx) {
|
||||
dx->mutable_data<T>(ctx.GetPlace());
|
||||
}
|
||||
if (dy) {
|
||||
dy->mutable_data<T>(ctx.GetPlace());
|
||||
}
|
||||
|
||||
if (x_dims == y_dims || product(y_dims) == 1) {
|
||||
if (dx) {
|
||||
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
||||
dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e;
|
||||
}
|
||||
|
||||
if (dy) {
|
||||
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
||||
dy_e.device(ctx.GetEigenDevice<Place>()) = x_e * dout_e;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
int axis = ctx.Attr<int>("axis");
|
||||
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
|
||||
|
||||
int pre, n, post;
|
||||
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
|
||||
|
||||
// TODO(gongweibao): wrap reshape to a function.
|
||||
if (post == 1) {
|
||||
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
|
||||
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
|
||||
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
|
||||
if (dx) {
|
||||
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
||||
dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e_bcast;
|
||||
}
|
||||
|
||||
if (dy) {
|
||||
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
||||
dy_e.device(ctx.GetEigenDevice<Place>()) =
|
||||
(x_e * dout_e)
|
||||
.reshape(Eigen::DSizes<int, 2>(pre, n))
|
||||
.sum(Eigen::array<int, 1>{{0}});
|
||||
}
|
||||
return;
|
||||
} else {
|
||||
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
|
||||
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
|
||||
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
|
||||
if (dx) {
|
||||
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
||||
dx_e.device(ctx.GetEigenDevice<Place>()) = dout_e * y_e_bcast;
|
||||
}
|
||||
|
||||
if (dy) {
|
||||
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
||||
dy_e.device(ctx.GetEigenDevice<Place>()) =
|
||||
(x_e * dout_e)
|
||||
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
|
||||
.sum(Eigen::array<int, 2>{{0, 2}});
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,157 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestElementwiseMulOp_Matrix(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "elementwise_mul"
|
||||
""" Warning
|
||||
CPU gradient check error!
|
||||
'X': np.random.random((32,84)).astype("float32"),
|
||||
'Y': np.random.random((32,84)).astype("float32")
|
||||
"""
|
||||
self.inputs = {
|
||||
'X': np.random.uniform(0.1, 1, [13, 17]).astype("float32"),
|
||||
'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float32")
|
||||
}
|
||||
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
|
||||
|
||||
def test_check_grad_ingore_x(self):
|
||||
self.check_grad(
|
||||
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
|
||||
|
||||
def test_check_grad_ingore_y(self):
|
||||
self.check_grad(
|
||||
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
|
||||
|
||||
|
||||
class TestElementwiseMulOp_Vector(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "elementwise_mul"
|
||||
self.inputs = {
|
||||
'X': np.random.random((32, )).astype("float32"),
|
||||
'Y': np.random.random((32, )).astype("float32")
|
||||
}
|
||||
self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
|
||||
|
||||
def test_check_grad_ingore_x(self):
|
||||
self.check_grad(
|
||||
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
|
||||
|
||||
def test_check_grad_ingore_y(self):
|
||||
self.check_grad(
|
||||
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
|
||||
|
||||
|
||||
class TestElementwiseMulOp_broadcast_0(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "elementwise_mul"
|
||||
self.inputs = {
|
||||
'X': np.random.rand(2, 3, 4).astype(np.float32),
|
||||
'Y': np.random.rand(2).astype(np.float32)
|
||||
}
|
||||
|
||||
self.attrs = {'axis': 0}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1)
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
|
||||
|
||||
def test_check_grad_ingore_x(self):
|
||||
self.check_grad(
|
||||
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
|
||||
|
||||
def test_check_grad_ingore_y(self):
|
||||
self.check_grad(
|
||||
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
|
||||
|
||||
|
||||
class TestElementwiseMulOp_broadcast_1(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "elementwise_mul"
|
||||
self.inputs = {
|
||||
'X': np.random.rand(2, 3, 4).astype(np.float32),
|
||||
'Y': np.random.rand(3).astype(np.float32)
|
||||
}
|
||||
|
||||
self.attrs = {'axis': 1}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1)
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
|
||||
|
||||
def test_check_grad_ingore_x(self):
|
||||
self.check_grad(
|
||||
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
|
||||
|
||||
def test_check_grad_ingore_y(self):
|
||||
self.check_grad(
|
||||
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
|
||||
|
||||
|
||||
class TestElementwiseMulOp_broadcast_2(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "elementwise_mul"
|
||||
self.inputs = {
|
||||
'X': np.random.rand(2, 3, 4).astype(np.float32),
|
||||
'Y': np.random.rand(4).astype(np.float32)
|
||||
}
|
||||
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4)
|
||||
}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.1)
|
||||
|
||||
def test_check_grad_ingore_x(self):
|
||||
self.check_grad(
|
||||
['Y'], 'Out', max_relative_error=0.1, no_grad_set=set("X"))
|
||||
|
||||
def test_check_grad_ingore_y(self):
|
||||
self.check_grad(
|
||||
['X'], 'Out', max_relative_error=0.1, no_grad_set=set('Y'))
|
||||
|
||||
|
||||
class TestElementwiseMulOp_broadcast_3(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "elementwise_mul"
|
||||
self.inputs = {
|
||||
'X': np.random.rand(2, 3, 4, 5).astype(np.float32),
|
||||
'Y': np.random.rand(3, 4).astype(np.float32)
|
||||
}
|
||||
|
||||
self.attrs = {'axis': 1}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 4, 1)
|
||||
}
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue