|
|
|
@ -41,59 +41,8 @@ class ElementwiseAddKernel : public framework::OpKernel<T> {
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
struct ElementwiseAddGradFunctor {
|
|
|
|
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
|
|
|
|
typename dY, typename dZ>
|
|
|
|
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
|
|
|
|
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
|
|
|
|
if (dx) {
|
|
|
|
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
|
|
|
|
dx_e.device(d) = dz_e;
|
|
|
|
|
}
|
|
|
|
|
if (dy) {
|
|
|
|
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
|
|
|
|
dy_e.device(d) = dz_e;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
struct ElementwiseAddBroadCastGradFunctor {
|
|
|
|
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
|
|
|
|
typename dY, typename dZ, typename Pre, typename N>
|
|
|
|
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
|
|
|
|
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
|
|
|
|
if (dx) {
|
|
|
|
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
|
|
|
|
dx_e.device(d) = dz_e;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (dy) {
|
|
|
|
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
|
|
|
|
dy_e.device(d) = dz_e.reshape(Eigen::DSizes<int, 2>(pre, n))
|
|
|
|
|
.sum(Eigen::array<int, 1>{{0}});
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
struct ElementwiseAddBroadCast2GradFunctor {
|
|
|
|
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
|
|
|
|
typename dY, typename dZ, typename Pre, typename N, typename Post>
|
|
|
|
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
|
|
|
|
|
Post post) {
|
|
|
|
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
|
|
|
|
if (dx) {
|
|
|
|
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
|
|
|
|
dx_e.device(d) = dz_e;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (dy) {
|
|
|
|
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
|
|
|
|
dy_e.device(d) = dz_e.reshape(Eigen::DSizes<int, 3>(pre, n, post))
|
|
|
|
|
.sum(Eigen::array<int, 2>{{0, 2}});
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
struct IdentityGrad {
|
|
|
|
|
HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout; }
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
@ -109,10 +58,9 @@ class ElementwiseAddGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
|
|
|
|
|
int axis = ctx.Attr<int>("axis");
|
|
|
|
|
ElementwiseGradCompute<DeviceContext, T, ElementwiseAddGradFunctor<T>,
|
|
|
|
|
ElementwiseAddBroadCastGradFunctor<T>,
|
|
|
|
|
ElementwiseAddBroadCast2GradFunctor<T>>(
|
|
|
|
|
ctx, x, y, out, dout, axis, dx, dy);
|
|
|
|
|
ElemwiseGradCompute<DeviceContext, T, IdentityGrad<T>, IdentityGrad<T>>(
|
|
|
|
|
ctx, *x, *y, *out, *dout, axis, dx, dy, IdentityGrad<T>(),
|
|
|
|
|
IdentityGrad<T>());
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|