Add unittests and OP version registry for quant_conv2d_dequant_fuse_pass (#27689)
parent
dec53a9c79
commit
8a4f85feb9
@ -0,0 +1,88 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from inference_pass_test import InferencePassTest
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.framework import IrGraph
|
||||
from paddle.fluid.core import PassVersionChecker
|
||||
from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass
|
||||
from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass
|
||||
from paddle.fluid.core import AnalysisConfig
|
||||
|
||||
|
||||
class QuantDequantTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(
|
||||
name="data", shape=[-1, 3, 32, 32], dtype="float32")
|
||||
param_attr = fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=0.0),
|
||||
trainable=False)
|
||||
quantized_op_out = self.append_quantized_op(data, param_attr)
|
||||
relu_out = fluid.layers.relu(quantized_op_out)
|
||||
self.set_quant_pattern()
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random([1, 3, 32, 32]).astype("float32"),
|
||||
}
|
||||
self.enable_trt = True
|
||||
self.trt_parameters = QuantDequantTest.TensorRTParam(
|
||||
1 << 30, 32, 0, AnalysisConfig.Precision.Int8, False, False)
|
||||
self.fetch_list = [relu_out]
|
||||
|
||||
def append_quantized_op(self, x, param_attr):
|
||||
return fluid.layers.conv2d(
|
||||
input=x,
|
||||
num_filters=3,
|
||||
filter_size=3,
|
||||
param_attr=param_attr,
|
||||
bias_attr=False,
|
||||
act=None)
|
||||
|
||||
def set_quant_pattern(self):
|
||||
self.activation_quant_type = 'moving_average_abs_max'
|
||||
self.weight_quant_type = 'channel_wise_abs_max'
|
||||
self.quantized_op_type = 'conv2d'
|
||||
self.channels = 3
|
||||
|
||||
def test_check_output(self):
|
||||
if core.is_compiled_with_cuda():
|
||||
use_gpu = True
|
||||
self.check_output_with_option(use_gpu, flatten=True, quant=True)
|
||||
self.assertTrue(
|
||||
PassVersionChecker.IsCompatible(
|
||||
'quant_conv2d_dequant_fuse_pass'))
|
||||
|
||||
|
||||
class QuantFcDequantTest(QuantDequantTest):
|
||||
def append_quantized_op(self, x, param_attr):
|
||||
return fluid.layers.fc(x,
|
||||
size=100,
|
||||
num_flatten_dims=1,
|
||||
param_attr=param_attr,
|
||||
bias_attr=False,
|
||||
act=None)
|
||||
|
||||
def set_quant_pattern(self):
|
||||
self.activation_quant_type = 'moving_average_abs_max'
|
||||
self.weight_quant_type = 'abs_max'
|
||||
self.quantized_op_type = 'mul'
|
||||
self.channels = 1
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue