|
|
|
|
@ -26,8 +26,16 @@ fluid.default_startup_program().random_seed = 111
|
|
|
|
|
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
|
|
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
|
|
|
|
|
|
|
|
|
places = fluid.layers.get_places(device_count=2, device_type='CPU')
|
|
|
|
|
pd = fluid.layers.ParallelDo(places)
|
|
|
|
|
device_type = 'CPU'
|
|
|
|
|
use_nccl = False
|
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
|
if fluid.core.is_compiled_with_cuda():
|
|
|
|
|
device_type = 'CUDA'
|
|
|
|
|
use_nccl = True
|
|
|
|
|
place = fluid.CUDAPlace(0)
|
|
|
|
|
|
|
|
|
|
places = fluid.layers.get_places(device_count=2, device_type=device_type)
|
|
|
|
|
pd = fluid.layers.ParallelDo(places, use_nccl=use_nccl)
|
|
|
|
|
with pd.do():
|
|
|
|
|
x_ = pd.read_input(x)
|
|
|
|
|
y_ = pd.read_input(y)
|
|
|
|
|
@ -54,7 +62,6 @@ train_reader = paddle.batch(
|
|
|
|
|
# paddle.dataset.uci_housing.train(), buf_size=500),
|
|
|
|
|
# batch_size=BATCH_SIZE)
|
|
|
|
|
|
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
|
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
|
|
|
|
|
|