【paddle.fleet】Fleet run graph in Executor and add two more strategies (#25844)
* split meta optimizer files * add graph execution in execution, update two properties in DistributedStrategy, unit tests for these featuresrevert-24895-update_cub
parent
6486fe8a94
commit
8d2896f1fe
@ -0,0 +1,22 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from multiprocessing import Pool, Process
|
||||
import os
|
||||
|
||||
|
||||
def launch_func(func, env_dict):
|
||||
for key in env_dict:
|
||||
os.environ[key] = env_dict[key]
|
||||
proc = Process(target=func)
|
||||
return proc
|
@ -0,0 +1,143 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import paddle
|
||||
import os
|
||||
from launch_function_helper import launch_func
|
||||
|
||||
|
||||
class TestFleetGraphExecutionMetaOptimizer(unittest.TestCase):
|
||||
def test_graph_execution_optimizer_not_apply(self):
|
||||
node_a = {
|
||||
"PADDLE_TRAINER_ID": "0",
|
||||
"PADDLE_CURRENT_ENDPOINT": "127.0.0.1:36003",
|
||||
"PADDLE_TRAINERS_NUM": "2",
|
||||
"PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:36003,127.0.0.1:36004",
|
||||
"http_proxy": "",
|
||||
"https_proxy": ""
|
||||
}
|
||||
|
||||
node_b = {
|
||||
"PADDLE_TRAINER_ID": "1",
|
||||
"PADDLE_CURRENT_ENDPOINT": "127.0.0.1:36004",
|
||||
"PADDLE_TRAINERS_NUM": "2",
|
||||
"PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:36003,127.0.0.1:36004",
|
||||
"http_proxy": "",
|
||||
"https_proxy": ""
|
||||
}
|
||||
|
||||
def node_func():
|
||||
import paddle.fleet as fleet
|
||||
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
|
||||
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
||||
fleet.init(role)
|
||||
input_x = paddle.fluid.layers.data(
|
||||
name="x", shape=[32], dtype='float32')
|
||||
input_y = paddle.fluid.layers.data(
|
||||
name="y", shape=[1], dtype='int64')
|
||||
|
||||
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
|
||||
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
|
||||
prediction = paddle.fluid.layers.fc(input=[fc_2],
|
||||
size=2,
|
||||
act='softmax')
|
||||
cost = paddle.fluid.layers.cross_entropy(
|
||||
input=prediction, label=input_y)
|
||||
avg_cost = paddle.fluid.layers.mean(x=cost)
|
||||
|
||||
strategy = paddle.fleet.DistributedStrategy()
|
||||
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
|
||||
optimizer = fleet.distributed_optimizer(
|
||||
optimizer, strategy=strategy)
|
||||
optimizer.minimize(avg_cost)
|
||||
|
||||
proc_a = launch_func(node_func, node_a)
|
||||
proc_a.start()
|
||||
proc_b = launch_func(node_func, node_b)
|
||||
proc_b.start()
|
||||
proc_a.join()
|
||||
proc_b.join()
|
||||
|
||||
def test_graph_execution_optimizer(self):
|
||||
node_a = {
|
||||
"PADDLE_TRAINER_ID": "0",
|
||||
"PADDLE_CURRENT_ENDPOINT": "127.0.0.1:36001",
|
||||
"PADDLE_TRAINERS_NUM": "2",
|
||||
"PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:36001,127.0.0.1:36002",
|
||||
"http_proxy": "",
|
||||
"https_proxy": ""
|
||||
}
|
||||
|
||||
node_b = {
|
||||
"PADDLE_TRAINER_ID": "1",
|
||||
"PADDLE_CURRENT_ENDPOINT": "127.0.0.1:36002",
|
||||
"PADDLE_TRAINERS_NUM": "2",
|
||||
"PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:36001,127.0.0.1:36002",
|
||||
"http_proxy": "",
|
||||
"https_proxy": ""
|
||||
}
|
||||
|
||||
def node_func():
|
||||
import paddle.fleet as fleet
|
||||
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
|
||||
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
||||
fleet.init(role)
|
||||
input_x = paddle.fluid.layers.data(
|
||||
name="x", shape=[32], dtype='float32')
|
||||
input_y = paddle.fluid.layers.data(
|
||||
name="y", shape=[1], dtype='int64')
|
||||
|
||||
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
|
||||
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
|
||||
prediction = paddle.fluid.layers.fc(input=[fc_2],
|
||||
size=2,
|
||||
act='softmax')
|
||||
cost = paddle.fluid.layers.cross_entropy(
|
||||
input=prediction, label=input_y)
|
||||
avg_cost = paddle.fluid.layers.mean(x=cost)
|
||||
|
||||
strategy = paddle.fleet.DistributedStrategy()
|
||||
strategy.nccl_comm_num = 2
|
||||
strategy.sync_nccl_allreduce = True
|
||||
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
|
||||
optimizer = fleet.distributed_optimizer(
|
||||
optimizer, strategy=strategy)
|
||||
optimizer.minimize(avg_cost)
|
||||
exe = paddle.fluid.Executor(place=paddle.fluid.CPUPlace())
|
||||
exe.run(paddle.fluid.default_startup_program())
|
||||
|
||||
import numpy as np
|
||||
|
||||
def gen_data():
|
||||
return {
|
||||
"x": np.random.random(size=(128, 32)).astype('float32'),
|
||||
"y": np.random.randint(
|
||||
2, size=(128, 1)).astype('int64')
|
||||
}
|
||||
|
||||
for i in range(10):
|
||||
cost_val = exe.run(feed=gen_data(), fetch_list=[avg_cost.name])
|
||||
print("cost of step[{}] = {}".format(i, cost_val))
|
||||
|
||||
proc_a = launch_func(node_func, node_a)
|
||||
proc_a.start()
|
||||
proc_b = launch_func(node_func, node_b)
|
||||
proc_b.start()
|
||||
proc_a.join()
|
||||
proc_b.join()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,95 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import paddle
|
||||
import os
|
||||
from launch_function_helper import launch_func
|
||||
|
||||
|
||||
class TestFleetGraphExecutionMetaOptimizer(unittest.TestCase):
|
||||
def test_graph_execution_optimizer(self):
|
||||
node_a = {
|
||||
"PADDLE_TRAINER_ID": "0",
|
||||
"PADDLE_CURRENT_ENDPOINT": "127.0.0.1:36001",
|
||||
"PADDLE_TRAINERS_NUM": "2",
|
||||
"PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:36001,127.0.0.1:36002",
|
||||
"http_proxy": "",
|
||||
"https_proxy": ""
|
||||
}
|
||||
|
||||
node_b = {
|
||||
"PADDLE_TRAINER_ID": "1",
|
||||
"PADDLE_CURRENT_ENDPOINT": "127.0.0.1:36002",
|
||||
"PADDLE_TRAINERS_NUM": "2",
|
||||
"PADDLE_TRAINER_ENDPOINTS": "127.0.0.1:36001,127.0.0.1:36002",
|
||||
"http_proxy": "",
|
||||
"https_proxy": ""
|
||||
}
|
||||
|
||||
def node_func():
|
||||
import paddle.fleet as fleet
|
||||
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
|
||||
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
||||
fleet.init(role)
|
||||
input_x = paddle.fluid.layers.data(
|
||||
name="x", shape=[32], dtype='float32')
|
||||
input_y = paddle.fluid.layers.data(
|
||||
name="y", shape=[1], dtype='int64')
|
||||
|
||||
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
|
||||
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
|
||||
prediction = paddle.fluid.layers.fc(input=[fc_2],
|
||||
size=2,
|
||||
act='softmax')
|
||||
cost = paddle.fluid.layers.cross_entropy(
|
||||
input=prediction, label=input_y)
|
||||
avg_cost = paddle.fluid.layers.mean(x=cost)
|
||||
|
||||
strategy = paddle.fleet.DistributedStrategy()
|
||||
strategy.nccl_comm_num = 2
|
||||
strategy.sync_nccl_allreduce = True
|
||||
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
|
||||
optimizer = fleet.distributed_optimizer(
|
||||
optimizer, strategy=strategy)
|
||||
optimizer.minimize(avg_cost)
|
||||
exe = paddle.fluid.Executor(place=paddle.fluid.CPUPlace())
|
||||
exe.run(paddle.fluid.default_startup_program())
|
||||
|
||||
import numpy as np
|
||||
|
||||
def gen_data():
|
||||
return {
|
||||
"x": np.random.random(size=(128, 32)).astype('float32'),
|
||||
"y": np.random.randint(
|
||||
2, size=(128, 1)).astype('int64')
|
||||
}
|
||||
|
||||
for i in range(10):
|
||||
cost_val = exe.run(feed=gen_data(), fetch_list=[avg_cost.name])
|
||||
print("cost of step[{}] = {}".format(i, cost_val))
|
||||
|
||||
proc_a = launch_func(node_func, node_a)
|
||||
proc_a.start()
|
||||
|
||||
# just for coverage
|
||||
for key in node_b:
|
||||
os.environ[key] = node_b[key]
|
||||
node_func()
|
||||
|
||||
proc_a.join()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -1,97 +0,0 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import paddle
|
||||
import os
|
||||
|
||||
|
||||
class TestFleetMetaOptimizer(unittest.TestCase):
|
||||
def setUp(self):
|
||||
os.environ["POD_IP"] = "127.0.0.1"
|
||||
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
|
||||
os.environ["PADDLE_TRAINERS_NUM"] = "2"
|
||||
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
|
||||
"127.0.0.1:36001,127.0.0.2:36001"
|
||||
|
||||
def test_graph_execution_optimizer_not_apply(self):
|
||||
import paddle.fleet as fleet
|
||||
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
|
||||
role = role_maker.PaddleCloudRoleMaker()
|
||||
fleet.init(role)
|
||||
input_x = paddle.fluid.layers.data(
|
||||
name="x", shape=[32], dtype='float32')
|
||||
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
|
||||
|
||||
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
|
||||
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
|
||||
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
|
||||
cost = paddle.fluid.layers.cross_entropy(
|
||||
input=prediction, label=input_y)
|
||||
avg_cost = paddle.fluid.layers.mean(x=cost)
|
||||
|
||||
strategy = paddle.fleet.DistributedStrategy()
|
||||
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
|
||||
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
|
||||
optimizer.minimize(avg_cost)
|
||||
|
||||
def test_graph_execution_optimizer(self):
|
||||
import paddle.fleet as fleet
|
||||
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
|
||||
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
||||
fleet.init(role)
|
||||
input_x = paddle.fluid.layers.data(
|
||||
name="x", shape=[32], dtype='float32')
|
||||
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
|
||||
|
||||
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
|
||||
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
|
||||
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
|
||||
cost = paddle.fluid.layers.cross_entropy(
|
||||
input=prediction, label=input_y)
|
||||
avg_cost = paddle.fluid.layers.mean(x=cost)
|
||||
|
||||
strategy = paddle.fleet.DistributedStrategy()
|
||||
strategy.nccl_comm_num = 2
|
||||
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
|
||||
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
|
||||
optimizer.minimize(avg_cost)
|
||||
|
||||
def test_recompute_optimizer(self):
|
||||
import paddle.fleet as fleet
|
||||
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
|
||||
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
||||
fleet.init(role)
|
||||
input_x = paddle.fluid.layers.data(
|
||||
name="x", shape=[32], dtype='float32')
|
||||
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
|
||||
|
||||
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
|
||||
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
|
||||
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
|
||||
cost = paddle.fluid.layers.cross_entropy(
|
||||
input=prediction, label=input_y)
|
||||
avg_cost = paddle.fluid.layers.mean(x=cost)
|
||||
|
||||
strategy = paddle.fleet.DistributedStrategy()
|
||||
strategy.recompute = True
|
||||
strategy.recompute_configs = {"checkpoints": ["fc2"]}
|
||||
|
||||
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
|
||||
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
|
||||
optimizer.minimize(avg_cost)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,54 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import paddle
|
||||
import os
|
||||
|
||||
|
||||
class TestFleetRecomputeMetaOptimizer(unittest.TestCase):
|
||||
def setUp(self):
|
||||
os.environ["POD_IP"] = "127.0.0.1"
|
||||
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
|
||||
os.environ["PADDLE_TRAINERS_NUM"] = "2"
|
||||
os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \
|
||||
"127.0.0.1:36001,127.0.0.2:36001"
|
||||
|
||||
def test_recompute_optimizer(self):
|
||||
import paddle.fleet as fleet
|
||||
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
|
||||
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
|
||||
fleet.init(role)
|
||||
input_x = paddle.fluid.layers.data(
|
||||
name="x", shape=[32], dtype='float32')
|
||||
input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')
|
||||
|
||||
fc_1 = paddle.fluid.layers.fc(input=input_x, size=64, act='tanh')
|
||||
fc_2 = paddle.fluid.layers.fc(input=fc_1, size=64, act='tanh')
|
||||
prediction = paddle.fluid.layers.fc(input=[fc_2], size=2, act='softmax')
|
||||
cost = paddle.fluid.layers.cross_entropy(
|
||||
input=prediction, label=input_y)
|
||||
avg_cost = paddle.fluid.layers.mean(x=cost)
|
||||
|
||||
strategy = paddle.fleet.DistributedStrategy()
|
||||
strategy.recompute = True
|
||||
strategy.recompute_configs = {"checkpoints": ["fc2"]}
|
||||
|
||||
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
|
||||
optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
|
||||
optimizer.minimize(avg_cost)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue