|
|
|
@ -43,9 +43,13 @@ class DownpourSGD(object):
|
|
|
|
|
self.learning_rate_ = learning_rate
|
|
|
|
|
self.window_ = window
|
|
|
|
|
self.type = "downpour"
|
|
|
|
|
self.data_norm_name = [
|
|
|
|
|
".batch_size", ".batch_square_sum", ".batch_sum",
|
|
|
|
|
".batch_size@GRAD", ".batch_square_sum@GRAD", ".batch_sum@GRAD"
|
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
def minimize(self,
|
|
|
|
|
loss,
|
|
|
|
|
losses,
|
|
|
|
|
startup_program=None,
|
|
|
|
|
parameter_list=None,
|
|
|
|
|
no_grad_set=None):
|
|
|
|
@ -65,39 +69,75 @@ class DownpourSGD(object):
|
|
|
|
|
worker_skipped_ops: operator names that need
|
|
|
|
|
to be skipped during execution
|
|
|
|
|
"""
|
|
|
|
|
params_grads = sorted(
|
|
|
|
|
append_backward(loss, parameter_list, no_grad_set),
|
|
|
|
|
key=lambda x: x[0].name)
|
|
|
|
|
table_name = find_distributed_lookup_table(loss.block.program)
|
|
|
|
|
if not isinstance(losses, list):
|
|
|
|
|
raise ValueError('losses is a list, just lick [model.cost]')
|
|
|
|
|
table_name = find_distributed_lookup_table(losses[0].block.program)
|
|
|
|
|
prefetch_slots = find_distributed_lookup_table_inputs(
|
|
|
|
|
loss.block.program, table_name)
|
|
|
|
|
losses[0].block.program, table_name)
|
|
|
|
|
prefetch_slots_emb = find_distributed_lookup_table_outputs(
|
|
|
|
|
loss.block.program, table_name)
|
|
|
|
|
losses[0].block.program, table_name)
|
|
|
|
|
|
|
|
|
|
ps_param = pslib.PSParameter()
|
|
|
|
|
server = DownpourServer()
|
|
|
|
|
# window is communication strategy
|
|
|
|
|
worker = DownpourWorker(self.window_)
|
|
|
|
|
# Todo(guru4elephant): support multiple tables definitions
|
|
|
|
|
# currently support one big sparse table
|
|
|
|
|
sparse_table_index = 0
|
|
|
|
|
# currently merge all dense parameters into one dense table
|
|
|
|
|
dense_table_index = 1
|
|
|
|
|
params = []
|
|
|
|
|
grads = []
|
|
|
|
|
for i in params_grads:
|
|
|
|
|
params.append(i[0])
|
|
|
|
|
for i in params_grads:
|
|
|
|
|
grads.append(i[1])
|
|
|
|
|
server.add_sparse_table(sparse_table_index, self.learning_rate_,
|
|
|
|
|
prefetch_slots, prefetch_slots_emb)
|
|
|
|
|
server.add_dense_table(dense_table_index, self.learning_rate_, params,
|
|
|
|
|
grads)
|
|
|
|
|
worker.add_sparse_table(sparse_table_index, self.learning_rate_,
|
|
|
|
|
prefetch_slots, prefetch_slots_emb)
|
|
|
|
|
worker.add_dense_table(dense_table_index, self.learning_rate_, params,
|
|
|
|
|
grads)
|
|
|
|
|
ps_param = pslib.PSParameter()
|
|
|
|
|
dense_table_index = 1
|
|
|
|
|
program_configs = []
|
|
|
|
|
for loss_index in range(len(losses)):
|
|
|
|
|
program_config = ps_param.trainer_param.program_config.add()
|
|
|
|
|
program_config.program_id = str(
|
|
|
|
|
id(losses[loss_index].block.program))
|
|
|
|
|
program_config.pull_sparse_table_id.extend([sparse_table_index])
|
|
|
|
|
program_config.push_sparse_table_id.extend([sparse_table_index])
|
|
|
|
|
params_grads = sorted(
|
|
|
|
|
append_backward(losses[loss_index], parameter_list,
|
|
|
|
|
no_grad_set),
|
|
|
|
|
key=lambda x: x[0].name)
|
|
|
|
|
params = []
|
|
|
|
|
grads = []
|
|
|
|
|
data_norm_params = []
|
|
|
|
|
data_norm_grads = []
|
|
|
|
|
for i in params_grads:
|
|
|
|
|
is_data_norm_data = False
|
|
|
|
|
for data_norm_name in self.data_norm_name:
|
|
|
|
|
if i[0].name.endswith(data_norm_name):
|
|
|
|
|
is_data_norm_data = True
|
|
|
|
|
data_norm_params.append(i[0])
|
|
|
|
|
if not is_data_norm_data:
|
|
|
|
|
params.append(i[0])
|
|
|
|
|
for i in params_grads:
|
|
|
|
|
is_data_norm_data = False
|
|
|
|
|
for data_norm_grad in self.data_norm_name:
|
|
|
|
|
if i[0].name.endswith(data_norm_grad):
|
|
|
|
|
is_data_norm_data = True
|
|
|
|
|
data_norm_grads.append(i[1])
|
|
|
|
|
if not is_data_norm_data:
|
|
|
|
|
grads.append(i[1])
|
|
|
|
|
server.add_dense_table(dense_table_index, self.learning_rate_,
|
|
|
|
|
params, grads)
|
|
|
|
|
worker.add_dense_table(dense_table_index, self.learning_rate_,
|
|
|
|
|
params, grads)
|
|
|
|
|
program_config.pull_dense_table_id.extend([dense_table_index])
|
|
|
|
|
program_config.push_dense_table_id.extend([dense_table_index])
|
|
|
|
|
if len(data_norm_params) != 0 and len(data_norm_grads) != 0:
|
|
|
|
|
dense_table_index += 1
|
|
|
|
|
server.add_data_norm_table(dense_table_index,
|
|
|
|
|
self.learning_rate_,
|
|
|
|
|
data_norm_params, data_norm_grads)
|
|
|
|
|
worker.add_dense_table(dense_table_index, self.learning_rate_,
|
|
|
|
|
data_norm_params, data_norm_grads)
|
|
|
|
|
program_config.pull_dense_table_id.extend([dense_table_index])
|
|
|
|
|
program_config.push_dense_table_id.extend([dense_table_index])
|
|
|
|
|
dense_table_index += 1
|
|
|
|
|
program_configs.append(program_config)
|
|
|
|
|
ps_param.server_param.CopyFrom(server.get_desc())
|
|
|
|
|
ps_param.trainer_param.CopyFrom(worker.get_desc())
|
|
|
|
|
for program_config in program_configs:
|
|
|
|
|
ps_param.trainer_param.program_config.extend([program_config])
|
|
|
|
|
# Todo(guru4elephant): figure out how to support more sparse parameters
|
|
|
|
|
# currently only support lookup_table
|
|
|
|
|
worker_skipped_ops = ["lookup_table", "lookup_table_grad"]
|
|
|
|
|