support feeding scalar when runing program , test=develop (#23214)
* support feed_python_builtin, test=develop * add test, test=develop * support CompiledProgram, test=develop * support fluid.data, test=develop * fix ci problems, test=develop * follow comments, test=developrevert-23830-2.0-beta
parent
68ea1ad55b
commit
8f2f977345
@ -0,0 +1,134 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
|
||||
import numpy
|
||||
import paddle.fluid.core as core
|
||||
import paddle.fluid as fluid
|
||||
|
||||
|
||||
class TestExecutor(unittest.TestCase):
|
||||
def net(self):
|
||||
lr = fluid.data(name="lr", shape=[1], dtype='float32')
|
||||
x = fluid.data(name="x", shape=[None, 1], dtype='float32')
|
||||
y = fluid.data(name="y", shape=[None, 1], dtype='float32')
|
||||
y_predict = fluid.layers.fc(input=x, size=1, act=None)
|
||||
|
||||
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
||||
avg_cost = fluid.layers.mean(cost)
|
||||
|
||||
opt = fluid.optimizer.Adam(learning_rate=lr)
|
||||
opt.minimize(avg_cost)
|
||||
|
||||
return lr, avg_cost
|
||||
|
||||
def test_program_feed_float(self):
|
||||
main_program = fluid.Program()
|
||||
startup_program = fluid.Program()
|
||||
scope = fluid.Scope()
|
||||
with fluid.program_guard(main_program, startup_program):
|
||||
with fluid.scope_guard(scope):
|
||||
cpu = fluid.CPUPlace()
|
||||
exe = fluid.Executor(cpu)
|
||||
lr, cost = self.net()
|
||||
exe.run(startup_program)
|
||||
train_data = numpy.array(
|
||||
[[1.0], [2.0], [3.0], [4.0]]).astype('float32')
|
||||
y_true = numpy.array(
|
||||
[[2.0], [4.0], [6.0], [8.0]]).astype('float32')
|
||||
a = 0.01
|
||||
_lr, _ = exe.run(feed={'x': train_data,
|
||||
'y': y_true,
|
||||
'lr': a},
|
||||
fetch_list=[lr, cost],
|
||||
return_numpy=False)
|
||||
self.assertEqual(_lr._dtype(), lr.dtype)
|
||||
self.assertEqual(_lr._dtype(), fluid.core.VarDesc.VarType.FP32)
|
||||
self.assertEqual(type(a), float)
|
||||
|
||||
def test_program_feed_int(self):
|
||||
main_program = fluid.Program()
|
||||
startup_program = fluid.Program()
|
||||
scope = fluid.Scope()
|
||||
with fluid.program_guard(main_program, startup_program):
|
||||
with fluid.scope_guard(scope):
|
||||
cpu = fluid.CPUPlace()
|
||||
exe = fluid.Executor(cpu)
|
||||
lr, cost = self.net()
|
||||
exe.run(startup_program)
|
||||
train_data = numpy.array(
|
||||
[[1.0], [2.0], [3.0], [4.0]]).astype('float32')
|
||||
y_true = numpy.array(
|
||||
[[2.0], [4.0], [6.0], [8.0]]).astype('float32')
|
||||
a = 0
|
||||
_lr, _ = exe.run(feed={'x': train_data,
|
||||
'y': y_true,
|
||||
'lr': a},
|
||||
fetch_list=[lr, cost],
|
||||
return_numpy=False)
|
||||
self.assertEqual(_lr._dtype(), lr.dtype)
|
||||
self.assertEqual(_lr._dtype(), fluid.core.VarDesc.VarType.FP32)
|
||||
self.assertEqual(type(a), int)
|
||||
|
||||
def test_compiled_program_feed_scalar(self):
|
||||
main_program = fluid.Program()
|
||||
startup_program = fluid.Program()
|
||||
scope = fluid.Scope()
|
||||
with fluid.program_guard(main_program, startup_program):
|
||||
with fluid.scope_guard(scope):
|
||||
lr, cost = self.net()
|
||||
cpu = fluid.CPUPlace()
|
||||
exe = fluid.Executor(cpu)
|
||||
exe.run(startup_program)
|
||||
compiled_prog = fluid.CompiledProgram(
|
||||
main_program).with_data_parallel(loss_name=cost.name)
|
||||
train_data = numpy.array(
|
||||
[[1.0], [2.0], [3.0], [4.0]]).astype('float32')
|
||||
y_true = numpy.array(
|
||||
[[2.0], [4.0], [6.0], [8.0]]).astype('float32')
|
||||
a = 0.01
|
||||
_lr, _ = exe.run(compiled_prog,
|
||||
feed={'x': train_data,
|
||||
'y': y_true,
|
||||
'lr': a},
|
||||
fetch_list=[lr, cost],
|
||||
return_numpy=False)
|
||||
self.assertEqual(_lr._dtype(), lr.dtype)
|
||||
self.assertEqual(_lr._dtype(), fluid.core.VarDesc.VarType.FP32)
|
||||
self.assertEqual(type(a), float)
|
||||
|
||||
|
||||
class TestAsLodTensor(unittest.TestCase):
|
||||
def test_as_lodtensor_int32(self):
|
||||
cpu = fluid.CPUPlace()
|
||||
tensor = fluid.executor._as_lodtensor(1.0, cpu,
|
||||
fluid.core.VarDesc.VarType.INT32)
|
||||
self.assertEqual(tensor._dtype(), fluid.core.VarDesc.VarType.INT32)
|
||||
|
||||
def test_as_lodtensor_fp64(self):
|
||||
cpu = fluid.CPUPlace()
|
||||
tensor = fluid.executor._as_lodtensor(1, cpu,
|
||||
fluid.core.VarDesc.VarType.FP64)
|
||||
self.assertEqual(tensor._dtype(), fluid.core.VarDesc.VarType.FP64)
|
||||
|
||||
def test_as_lodtensor_error(self):
|
||||
cpu = fluid.CPUPlace()
|
||||
self.assertRaises(AssertionError, fluid.executor._as_lodtensor, 1, cpu)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue