Merge branch 'develop' into infershape_example

revert-16144-rnn_mem_opt
luotao1 6 years ago
commit 8f6597aa0e

@ -174,7 +174,7 @@ else()
cc_test(test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor elementwise_add_op)
endif()
target_link_libraries(executor garbage_collector)
target_link_libraries(executor garbage_collector while_op_helper)
cc_library(parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor parallel_ssa_graph_executor

@ -61,7 +61,8 @@ cc_library(inplace_op_pass SRCS inplace_op_pass.cc DEPS memory_optimize_pass op_
cc_library(modify_op_lock_and_record_event_pass SRCS modify_op_lock_and_record_event_pass.cc DEPS computation_op_handle op_graph_view multi_devices_helper)
cc_library(reference_count_pass_helper SRCS reference_count_pass_helper.cc DEPS garbage_collector computation_op_handle)
cc_library(eager_deletion_op_handle SRCS eager_deletion_op_handle.cc DEPS lod_tensor selected_rows reference_count_pass_helper)
cc_library(eager_deletion_pass SRCS eager_deletion_pass.cc DEPS computation_op_handle eager_deletion_op_handle graph graph_helper pass)
cc_library(while_op_eager_deletion_pass SRCS while_op_eager_deletion_pass.cc DEPS while_op_helper graph_helper pass computation_op_handle)
cc_library(eager_deletion_pass SRCS eager_deletion_pass.cc DEPS computation_op_handle eager_deletion_op_handle graph graph_helper pass while_op_eager_deletion_pass)
cc_library(reference_count_pass SRCS reference_count_pass.cc DEPS computation_op_handle graph graph_helper pass op_graph_view reference_count_pass_helper)
cc_library(sequential_execution_pass SRCS sequential_execution_pass.cc DEPS graph graph_helper pass)

@ -14,6 +14,7 @@
#pragma once
#include <memory>
#include <string>
#include <vector>
@ -31,6 +32,8 @@ class ComputationOpHandle : public OpHandleBase {
ComputationOpHandle(ir::Node *node, Scope *scope, platform::Place place,
size_t scope_idx);
OperatorBase *GetOp() { return op_.get(); }
std::string Name() const override;
const Scope *GetScope() const { return scope_; }

@ -12,6 +12,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <unordered_set>
#include <utility>
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/scope.h"
@ -45,6 +49,7 @@ EagerDeletionOpHandle::EagerDeletionOpHandle(
}
}
#endif
PADDLE_ENFORCE(!var_names_.empty(), "Var names cannot be empty");
}
EagerDeletionOpHandle::~EagerDeletionOpHandle() {
@ -60,15 +65,20 @@ EagerDeletionOpHandle::~EagerDeletionOpHandle() {
std::string EagerDeletionOpHandle::Name() const { return "eager_deletion"; }
void EagerDeletionOpHandle::RunImpl() {
auto *exec_scope = scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
Scope *exec_scope = nullptr;
std::deque<std::shared_ptr<memory::Allocation>> garbages;
for (auto &name : var_names_) {
auto it = ref_cnts_->find(name);
// Var not found, not reference count has not decreased to 0
// Reference count has not decreased to 0
if (it == ref_cnts_->end() || it->second.fetch_sub(1) != 1) {
continue;
}
if (!exec_scope) {
exec_scope = scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
}
// Var not found
auto *var = exec_scope->FindVar(name);
if (var == nullptr) {
continue;

@ -12,20 +12,173 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <algorithm>
#include <functional>
#include <queue>
#include <string>
#include <tuple>
#include <vector>
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/eager_deletion_op_handle.h"
#include "paddle/fluid/framework/details/eager_deletion_pass.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
DEFINE_double(memory_fraction_of_eager_deletion, 1.0,
"Fraction of eager deletion. If less than 1.0, all variables in "
"the program would be sorted according to its memory size, and "
"only the FLAGS_memory_fraction_of_eager_deletion of the largest "
"variables would be deleted.");
namespace paddle {
namespace framework {
namespace details {
// op -> variables which can be deleted after op runs
using OpToVarNameSetMap =
std::unordered_map<ComputationOpHandle *, std::unordered_set<std::string>>;
// Check whether the variable is LoDTensor based on static VarDesc info
static bool IsLoDTensor(VarDesc *var) {
return var->Proto()->type().type() == proto::VarType::LOD_TENSOR;
}
// Get memory size of LoDTensor
static int64_t GetMemorySize(
const std::unordered_map<std::string, std::vector<VarHandle *>> &vars,
const std::string &var_name) {
auto *var_desc = TryGetLatestVarDesc(vars.at(var_name));
PADDLE_ENFORCE_NOT_NULL(var_desc);
PADDLE_ENFORCE(IsLoDTensor(var_desc));
auto dims = var_desc->GetShape();
return SizeOfType(var_desc->GetDataType()) *
std::accumulate(dims.begin(), dims.end(), static_cast<int64_t>(1),
std::multiplies<int64_t>());
}
// Split all variables in the graph into LoDTensor and Non-LoDTensor (e.g.
// SelectedRows, LoDTensorArray)
// Since partial GC is based on static analysis of memory size of each variable
// So we should skip SelectedRows and LoDTensorArray here
static void SplitIntoLoDTensorAndNonLoDTensorVars(
const OpToVarNameSetMap &m, const GraphVars &vars,
OpToVarNameSetMap *lod_tensors, OpToVarNameSetMap *other_vars) {
lod_tensors->clear();
other_vars->clear();
for (auto &op_vars_pair : m) {
for (auto &var_name : op_vars_pair.second) {
auto *var_desc = TryGetLatestVarDesc(
vars[op_vars_pair.first->GetScopeIdx()].at(var_name));
if (IsLoDTensor(var_desc)) {
(*lod_tensors)[op_vars_pair.first].insert(var_name);
} else {
(*other_vars)[op_vars_pair.first].insert(var_name);
}
}
}
}
struct GCVarInfo {
GCVarInfo(const std::string &name, int64_t memory_size,
ComputationOpHandle *op, size_t scope_idx)
: name_(name),
memory_size_(memory_size),
op_(op),
scope_idx_(scope_idx) {}
std::string name_; // variable name
int64_t memory_size_; // memory size
ComputationOpHandle *op_; // op after which the variable could be deleted
size_t scope_idx_; // scope index where the variable locates
int64_t AbsMemorySize() const { return std::abs(memory_size_); }
};
// Delete delete_lod_tensor_only is not used currently
static OpToVarNameSetMap ShrinkGCVars(
const OpToVarNameSetMap &m, const GraphVars &vars,
const std::vector<platform::Place> &places, double fraction_of_memory_size,
bool delete_lod_tensor_only = false) {
// Do not perform gc when fraction_of_memory_size = 0
if (fraction_of_memory_size <= 0.0) return {};
/**
* Step 1: Split all variables into LoDTensor and Non-LoDTensor.
* We can only calculate memory size of LoDTensors
*/
OpToVarNameSetMap lod_tensors, other_vars;
SplitIntoLoDTensorAndNonLoDTensorVars(m, vars, &lod_tensors, &other_vars);
// Perform complete gc when fraction_of_memory_size >= 1
if (fraction_of_memory_size >= 1.0) {
return delete_lod_tensor_only ? lod_tensors : m;
}
/**
* Step 2: build GCVarInfos, and calculate total memory sizes of each device
*/
// place -> variable info (name, memory size, place, scope_idx)
std::map<platform::Place, std::vector<GCVarInfo>> place_to_vars;
// place -> total memory sizes
std::map<platform::Place, int64_t> place_to_size;
for (auto &op_vars_pair : lod_tensors) {
auto *op = op_vars_pair.first;
auto &var_names = op_vars_pair.second;
auto scope_idx = op->GetScopeIdx();
auto &place = places[scope_idx];
for (auto &var_name : var_names) {
auto var_size = GetMemorySize(vars[scope_idx], var_name);
GCVarInfo var_info(var_name, var_size, op, scope_idx);
place_to_size[place] += var_info.AbsMemorySize();
place_to_vars[place].emplace_back(std::move(var_info));
}
}
/**
* Step 3: sort GCVarInfos, and only delete the largest variables.
*/
OpToVarNameSetMap partial_vars;
for (auto &place_to_var_pair : place_to_vars) {
auto &place = place_to_var_pair.first;
auto &gc_vars = place_to_var_pair.second;
std::sort(gc_vars.begin(), gc_vars.end(),
[](const GCVarInfo &var1, const GCVarInfo &var2) {
return var1.AbsMemorySize() > var2.AbsMemorySize();
});
int64_t accumulated_size = 0;
int64_t size_threshold =
static_cast<int64_t>(fraction_of_memory_size * place_to_size[place]);
for (size_t i = 0; i < gc_vars.size() && accumulated_size < size_threshold;
++i) {
partial_vars[gc_vars[i].op_].insert(gc_vars[i].name_);
accumulated_size += gc_vars[i].AbsMemorySize();
}
}
/**
* Step 4: Combine other vars (SelectedRows, LoDTensorArray)
*/
if (!delete_lod_tensor_only) {
for (auto &op_vars_pair : other_vars) {
partial_vars[op_vars_pair.first].insert(op_vars_pair.second.begin(),
op_vars_pair.second.end());
}
}
return partial_vars;
}
class EagerDeletionPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
std::unique_ptr<ir::Graph> EagerDeletionPass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
auto &ref_cnts =
@ -43,9 +196,7 @@ std::unique_ptr<ir::Graph> EagerDeletionPass::ApplyImpl(
// a reverse map of last_live_ops
// i.e., last op --> variable names which can be deleted.
std::unordered_map<ComputationOpHandle *, std::unordered_set<std::string>>
op_vars_map;
OpToVarNameSetMap op_vars_map;
for (auto &var_ops_map : last_live_ops) {
for (auto &var_ops_pair : var_ops_map) {
const std::string &var_name = var_ops_pair.first;
@ -55,6 +206,9 @@ std::unique_ptr<ir::Graph> EagerDeletionPass::ApplyImpl(
}
}
op_vars_map = ShrinkGCVars(op_vars_map, vars, places,
FLAGS_memory_fraction_of_eager_deletion);
for (auto &pair : op_vars_map) {
auto *op = pair.first;
auto &var_names = pair.second;
@ -85,8 +239,13 @@ std::unique_ptr<ir::Graph> EagerDeletionPass::ApplyImpl(
eager_deletion_op->AddOutput(dummy_leaf);
}
VLOG(10) << "FLAGS_memory_fraction_of_eager_deletion = "
<< FLAGS_memory_fraction_of_eager_deletion;
VLOG(10) << "Create " << op_vars_map.size() << " EagerDeletionOpHandle(s)";
return graph;
auto while_op_eager_deletion_pass =
ir::PassRegistry::Instance().Get("while_op_eager_deletion_pass");
return while_op_eager_deletion_pass->Apply(std::move(graph));
}
} // namespace details
@ -99,3 +258,5 @@ REGISTER_PASS(eager_deletion_pass,
.RequirePassAttr(paddle::framework::details::kLastLiveOpsOfVars)
.RequirePassAttr(paddle::framework::details::kAllPlaces)
.RequirePassAttr(paddle::framework::details::kGarbageCollector);
USE_PASS(while_op_eager_deletion_pass);

@ -1,32 +0,0 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace details {
class EagerDeletionPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
} // namespace details
} // namespace framework
} // namespace paddle

@ -12,9 +12,13 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <memory>
#include <queue>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/computation_op_handle.h"
@ -189,15 +193,6 @@ ExtractComputationOpFromLastLivedVar(VarHandle *var, size_t scope_idx,
return shrink_func(computation_op);
}
static VarDesc *TryGetLatestVarDesc(const std::vector<VarHandle *> &vars) {
VarDesc *var_desc = nullptr;
std::find_if(vars.rbegin(), vars.rend(), [&](VarHandle *var_handle) -> bool {
var_desc = var_handle->Node()->Var();
return var_desc != nullptr;
});
return var_desc;
}
std::unique_ptr<ir::Graph> ReferenceCountPass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
auto &ref_cnts = Get<std::vector<ReferenceCountMap>>(kGlobalReferenceCount);

@ -13,9 +13,22 @@
// limitations under the License.
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/framework/var_desc.h"
namespace paddle {
namespace framework {
namespace details {} // namespace details
namespace details {
VarDesc *TryGetLatestVarDesc(const std::vector<VarHandle *> &vars) {
VarDesc *var_desc = nullptr;
std::find_if(vars.rbegin(), vars.rend(), [&](VarHandle *var_handle) -> bool {
var_desc = var_handle->Node()->Var();
return var_desc != nullptr;
});
return var_desc;
}
} // namespace details
} // namespace framework
} // namespace paddle

@ -16,6 +16,7 @@
#include <atomic>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
@ -25,6 +26,10 @@
namespace paddle {
namespace framework {
class VarDesc;
class VarHandle;
namespace details {
class ComputationOpHandle;
@ -43,9 +48,11 @@ const char kGarbageCollector[] = "garbage_collector";
const char kAllPlaces[] = "all_places";
using LastLiveOpsOfVars =
std::unordered_map<std::string, std::unordered_set<ComputationOpHandle*>>;
std::unordered_map<std::string, std::unordered_set<ComputationOpHandle *>>;
const char kLastLiveOpsOfVars[] = "last_live_ops_of_var";
VarDesc *TryGetLatestVarDesc(const std::vector<VarHandle *> &vars);
} // namespace details
} // namespace framework
} // namespace paddle

@ -0,0 +1,62 @@
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/computation_op_handle.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
namespace paddle {
namespace framework {
namespace details {
class WhileOpEagerDeletionPass : public ir::Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override {
auto all_ops = ir::FilterByNodeWrapper<OpHandleBase>(*graph);
// Find all while_op and while_grad_op
std::unordered_map<size_t, std::pair<std::vector<OperatorBase *>,
std::vector<OperatorBase *>>>
target_ops;
for (auto *op : all_ops) {
auto compute_op = dynamic_cast<ComputationOpHandle *>(op);
if (compute_op == nullptr) continue;
if (compute_op->Name() == "while") {
target_ops[compute_op->GetScopeIdx()].first.emplace_back(
compute_op->GetOp());
} else if (compute_op->Name() == "while_grad") {
target_ops[compute_op->GetScopeIdx()].second.emplace_back(
compute_op->GetOp());
}
}
for (auto &ops_pair : target_ops) {
auto &while_ops = ops_pair.second.first;
auto &while_grad_ops = ops_pair.second.second;
operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(
while_ops, while_grad_ops);
}
return graph;
}
};
} // namespace details
} // namespace framework
} // namespace paddle
REGISTER_PASS(while_op_eager_deletion_pass,
paddle::framework::details::WhileOpEagerDeletionPass);

@ -14,6 +14,10 @@ limitations under the License. */
#include "paddle/fluid/framework/executor.h"
#include <deque>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
@ -23,6 +27,7 @@ limitations under the License. */
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/framework/transfer_scope_cache.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
@ -75,11 +80,11 @@ static std::unordered_map<std::string, size_t> GetNonPersistableReferenceCounts(
ExecutorPrepareContext::ExecutorPrepareContext(
const framework::ProgramDesc& prog, size_t block_id,
const std::vector<std::string>& skip_ref_cnt_vars)
: prog_(prog), block_id_(block_id) {
if (GetEagerDeletionThreshold() >= 0) {
global_ref_cnts_ = GetNonPersistableReferenceCounts(prog.Block(block_id),
skip_ref_cnt_vars);
const std::vector<std::string>& keep_vars, bool force_disable_gc)
: prog_(prog), block_id_(block_id), force_disable_gc_(force_disable_gc) {
if (GetEagerDeletionThreshold() >= 0 && !force_disable_gc_) {
global_ref_cnts_ =
GetNonPersistableReferenceCounts(prog.Block(block_id), keep_vars);
}
}
@ -184,13 +189,15 @@ void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
}
void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
bool create_local_scope, bool create_vars) {
bool create_local_scope, bool create_vars,
const std::vector<std::string>& skip_ref_cnt_vars,
bool force_disable_gc) {
platform::RecordBlock b(block_id);
if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
#ifdef PADDLE_WITH_NGRAPH
if (FLAGS_use_ngraph) operators::NgraphEngine::EnableNgraph(pdesc);
#endif
auto ctx = Prepare(pdesc, block_id);
auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
}
@ -357,9 +364,9 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
const ProgramDesc& program, int block_id,
const std::vector<std::string>& skip_ref_cnt_vars) {
std::unique_ptr<ExecutorPrepareContext> ctx(
new ExecutorPrepareContext(program, block_id, skip_ref_cnt_vars));
const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
std::unique_ptr<ExecutorPrepareContext> ctx(new ExecutorPrepareContext(
program, block_id, skip_ref_cnt_vars, force_disable_gc));
PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
auto& block = program.Block(block_id);
for (auto& op_desc : block.AllOps()) {
@ -370,7 +377,8 @@ std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
const ProgramDesc& program, const std::vector<int>& block_ids,
const std::vector<std::vector<std::string>>& skip_ref_cnt_vars) {
const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
bool force_disable_gc) {
PADDLE_ENFORCE(
skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
"skip_ref_cnt_vars should be either empty or equals to block number %d",
@ -380,9 +388,11 @@ std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
for (auto& bid : block_ids) {
ExecutorPrepareContext* ctx;
if (skip_ref_cnt_vars.empty()) {
ctx = new ExecutorPrepareContext(program, bid);
ctx = new ExecutorPrepareContext(program, bid, std::vector<std::string>(),
force_disable_gc);
} else {
ctx = new ExecutorPrepareContext(program, bid, skip_ref_cnt_vars[idx]);
ctx = new ExecutorPrepareContext(program, bid, skip_ref_cnt_vars[idx],
force_disable_gc);
}
PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
auto& block = program.Block(bid);
@ -409,8 +419,9 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
int64_t max_memory_size = GetEagerDeletionThreshold();
std::unique_ptr<GarbageCollector> gc;
// skip while_op and while_grad_op temporarily
if (max_memory_size >= 0 && !keep_kids) {
// FIXME(zjl): recurrent_op is rather complex, we would
// disable gc forcely in recurrent_op
if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
ctx->ResetReferenceCount();
#ifdef PADDLE_WITH_CUDA
if (platform::is_gpu_place(place_)) {
@ -428,6 +439,11 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
#ifdef PADDLE_WITH_CUDA
}
#endif
// If gc is enabled and block size > 1
if (gc && ctx->prog_.Size() > 1) {
operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(ctx->block_id_,
ctx->ops_);
}
}
for (auto& op : ctx->ops_) {

@ -15,7 +15,9 @@ limitations under the License. */
#pragma once
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
@ -30,7 +32,8 @@ namespace framework {
struct ExecutorPrepareContext {
ExecutorPrepareContext(const framework::ProgramDesc& prog, size_t block_id,
const std::vector<std::string>& skip_ref_cnt_vars =
std::vector<std::string>());
std::vector<std::string>(),
bool force_disable_gc = false);
~ExecutorPrepareContext();
@ -38,6 +41,7 @@ struct ExecutorPrepareContext {
const framework::ProgramDesc& prog_;
size_t block_id_;
bool force_disable_gc_;
std::vector<std::unique_ptr<OperatorBase>> ops_;
std::unordered_map<std::string, size_t> global_ref_cnts_;
@ -66,7 +70,10 @@ class Executor {
* Scope
*/
void Run(const ProgramDesc& prog, Scope* scope, int block_id,
bool create_local_scope = true, bool create_vars = true);
bool create_local_scope = true, bool create_vars = true,
const std::vector<std::string>& skip_ref_cnt_vars =
std::vector<std::string>(),
bool force_disable_gc = false);
// This API is very slow.
void Run(const ProgramDesc& program, Scope* scope,
@ -79,12 +86,14 @@ class Executor {
static std::unique_ptr<ExecutorPrepareContext> Prepare(
const ProgramDesc& program, int block_id,
const std::vector<std::string>& skip_ref_cnt_vars =
std::vector<std::string>());
std::vector<std::string>(),
bool force_disable_gc = false);
static std::vector<std::shared_ptr<ExecutorPrepareContext>> Prepare(
const ProgramDesc& program, const std::vector<int>& block_ids,
const std::vector<std::vector<std::string>>& skip_ref_cnt_vars =
std::vector<std::vector<std::string>>());
std::vector<std::vector<std::string>>(),
bool force_disable_gc = false);
void CreateVariables(const ProgramDesc& pdesc, Scope* scope, int block_id);

@ -159,10 +159,9 @@ class Autograd {
for (auto it : candidate->pre_ops_) {
for (OpBase* pre_op : it.second) {
if (!pre_op) continue;
VLOG(5) << "op dep " << candidate->op_desc_->Type() << " trace id "
VLOG(5) << "op dep " << candidate->Type() << " trace id "
<< candidate->trace_id_ << " <---- " << it.first << " <---- "
<< pre_op->op_desc_->Type() << " trace id "
<< pre_op->trace_id_;
<< pre_op->Type() << " trace id " << pre_op->trace_id_;
if (visited.find(pre_op) == visited.end()) {
visited.insert(pre_op);
queue.push_back(pre_op);
@ -180,10 +179,12 @@ std::unique_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
PADDLE_ENFORCE(var_->IsInitialized(),
"Variable must be initialized when getting numpy tensor");
std::unique_ptr<VarBase> new_var(new VarBase());
// TODO(minqiyang): change this after move unique_name generator to CXX
const framework::LoDTensor& self_tensor = var_->Get<framework::LoDTensor>();
std::unique_ptr<VarBase> new_var(new VarBase(
"Itmp", self_tensor.type(), self_tensor.dims(), dst_place, true, false));
framework::LoDTensor* tensor =
new_var->var_->GetMutable<framework::LoDTensor>();
tensor->Resize(var_->Get<framework::LoDTensor>().dims());
tensor->set_lod(var_->Get<framework::LoDTensor>().lod());
if (blocking) {
@ -199,52 +200,62 @@ std::unique_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
}
if (platform::is_gpu_place(dst_place)) {
VLOG(3) << "copy tensor " << var_desc_->Name() << " from gpu";
VLOG(3) << "copy tensor " << Name() << " from gpu";
}
return new_var;
}
framework::LoDTensor& VarBase::GradValue() {
VLOG(3) << "get var grad " << var_desc_->Name();
VLOG(3) << "get var grad " << Name();
PADDLE_ENFORCE_NOT_NULL(grads_,
"Could not get grad value from no grad variable");
return *(grads_->var_->GetMutable<framework::LoDTensor>());
}
std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
if (grad_op_descs_.empty() && backward_id_ <= 0) {
VLOG(3) << "op with no grad: " << op_desc_->Type();
VLOG(3) << "op with no grad: " << Type();
return {};
}
VLOG(3) << "apply op grad: " << op_desc_->Type();
std::vector<framework::VariableValueMap> grad_outputs;
VLOG(3) << "apply op grad: " << Type();
std::vector<framework::VariableValueMap> tmp_grad_outputs;
if (backward_id_ > 0) {
VLOG(3) << "py_layer_grad";
grad_outputs.resize(1);
grad_outputs[0][framework::GradVarName(PyLayer::kFwdOut)] =
tmp_grad_outputs.resize(1);
tmp_grad_outputs[0][framework::GradVarName(PyLayer::kFwdOut)] =
PyLayer::ApplyGrad(
backward_id_,
grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)]);
} else {
grad_outputs.resize(grad_op_descs_.size());
for (size_t k = 0; k < grad_op_descs_.size(); ++k) {
const size_t grad_op_count = grad_op_descs_.size();
tmp_grad_outputs.resize(grad_op_count);
for (size_t k = 0; k < grad_op_count; ++k) {
framework::OpDesc* grad_op_desc = grad_op_descs_[k];
VLOG(3) << "op grad " << grad_op_desc->Type();
for (auto it : grad_output_vars_[k]) {
auto& outputs = grad_outputs[k][it.first];
auto& grad_output_variable_map = grad_output_vars_[k];
VLOG(3) << "apply grad op " << grad_op_desc->Type();
// Allocate tmp grad output variable
for (auto it : grad_output_variable_map) {
auto& outputs = tmp_grad_outputs[k][it.first];
outputs.reserve(it.second.size());
for (size_t i = 0; i < it.second.size(); ++i) {
// Allocate a new variable
Variable* tmp_var = new framework::Variable();
tmp_var->GetMutable<framework::LoDTensor>();
outputs.push_back(tmp_var);
outputs.emplace_back(tmp_var);
}
}
framework::RuntimeContext ctx(grad_input_vars_[k], grad_outputs[k]);
// Run grad op
framework::RuntimeContext ctx(grad_input_vars_[k], tmp_grad_outputs[k]);
// No need to do compile time infer shape here.
// grad_op_desc_->InferShape(*block_);
grad_op_desc->InferVarType(block_);
// grad_op_desc->InferVarType(block_);
std::unique_ptr<framework::OperatorBase> opbase =
framework::OpRegistry::CreateOp(*grad_op_desc);
@ -260,9 +271,10 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
}
}
// Add tmp grad outputs to original grad vars
for (size_t k = 0; k < grad_output_vars_.size(); ++k) {
for (auto it : grad_output_vars_[k]) {
auto& outputs = grad_outputs[k][it.first];
auto& outputs = tmp_grad_outputs[k][it.first];
auto& origin_outputs = it.second;
PADDLE_ENFORCE_EQ(outputs.size(), origin_outputs.size());
@ -316,19 +328,14 @@ void PyLayer::RegisterFunc(int func_id, const py::object& py_func) {
int PyLayer::NumFuncs() { return py_funcs_.size(); }
std::vector<VarBase*> PyLayer::Apply(int func_id,
const std::vector<VarBase*>& inputs) {
std::vector<Variable*> PyLayer::Apply(int func_id,
const std::vector<VarBase*>& inputs) {
std::vector<framework::Variable*> invars;
for (const VarBase* in : inputs) {
invars.push_back(in->var_);
}
PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end());
std::vector<Variable*> outvars = CallPythonFunc(py_funcs_[func_id], invars);
std::vector<VarBase*> ret;
for (Variable* v : outvars) {
ret.push_back(new VarBase(v, new VarBase(true)));
}
return ret;
return CallPythonFunc(py_funcs_[func_id], invars);
}
std::vector<Variable*> PyLayer::ApplyGrad(

@ -112,31 +112,53 @@ class OpBase;
*/
class VarBase {
public:
VarBase() : VarBase(new framework::Variable(), new VarBase(true)) {}
explicit VarBase(bool stop_gradient)
: VarBase(new framework::Variable(),
stop_gradient ? nullptr : new VarBase(true), stop_gradient) {}
VarBase(framework::Variable* var, VarBase* grad)
: VarBase(var, grad, false) {}
// Internal interface, create VarBase from exist variable
VarBase(const std::string& name, framework::Variable* var, VarBase* grad,
bool stop_gradient)
: VarBase(name, var->Get<framework::LoDTensor>().type(),
var->Get<framework::LoDTensor>().dims(),
var->Get<framework::LoDTensor>().place(), var, grad,
stop_gradient, false) {}
// Python interface
VarBase(const std::string& name, const framework::proto::VarType::Type dtype,
const std::vector<int64_t>& shape, const platform::Place& place,
bool stop_gradient, bool persistable)
: VarBase(name, dtype, framework::make_ddim(shape), place, stop_gradient,
persistable) {}
// Internal interface, create VarBase from with ddim
VarBase(const std::string& name, const framework::proto::VarType::Type dtype,
const framework::DDim& shape, const platform::Place& place,
bool stop_gradient, bool persistable)
: VarBase(name, dtype, shape, place, nullptr, nullptr, stop_gradient,
persistable) {}
private:
VarBase(framework::Variable* var, VarBase* grad, bool stop_gradient)
: name_(),
var_desc_(nullptr),
VarBase(const std::string& name, framework::proto::VarType::Type dtype,
const framework::DDim& shape, const platform::Place& place,
framework::Variable* var, VarBase* grad, bool stop_gradient,
bool persistable)
: name_(name),
dtype_(dtype),
place_(place),
var_(var),
grads_(grad),
block_(nullptr),
persistable_(false),
stop_gradient_(stop_gradient),
persistable_(persistable),
pre_op_(nullptr),
pre_op_out_name_(),
pre_op_out_idx_(-1) {}
pre_op_out_idx_(-1) {
if (!var_) {
var_ = new framework::Variable();
auto tensor = var_->GetMutable<framework::LoDTensor>();
tensor->Resize(shape);
tensor->mutable_data(place_, dtype_);
}
}
public:
virtual ~VarBase() {
// TODO(minqiyang): remove var desc from block desc
if (var_) {
delete var_;
var_ = nullptr;
@ -151,14 +173,30 @@ class VarBase {
pre_op_out_idx_ = -1;
}
inline OpBase* PreOp() const { return pre_op_; }
inline int PreOpOutIdx() const { return pre_op_out_idx_; }
inline void SetName(const std::string& name) { name_ = name; }
inline std::string Name() const { return name_; }
inline std::vector<int64_t> Shape() const {
if (var_->IsInitialized()) {
return framework::vectorize(var_->Get<framework::LoDTensor>().dims());
} else {
return {};
}
}
inline framework::proto::VarType::Type DType() const { return dtype_; }
inline void SetStopGradient(bool stop_gradient) {
stop_gradient_ = stop_gradient;
}
inline bool IsStopGradient() const { return stop_gradient_; }
inline void SetPersistable(bool persistable) { persistable_ = persistable; }
inline bool IsPersistable() const { return persistable_; }
inline OpBase* PreOp() const { return pre_op_; }
inline int PreOpOutIdx() const { return pre_op_out_idx_; }
void RunBackward();
inline void ResetPreOp(OpBase* op) {
@ -180,7 +218,7 @@ class VarBase {
}
void ClearGradient() {
VLOG(1) << "clear gradient of " << var_desc_->Name();
VLOG(1) << "clear gradient of " << Name();
if (grads_ && grads_->var_ && grads_->var_->IsInitialized()) {
auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
operators::math::set_constant(
@ -196,23 +234,20 @@ class VarBase {
const bool blocking) const;
inline std::string GradName() const {
PADDLE_ENFORCE(
var_desc_,
"Couldn't get gradient variable's name, please call backward() first");
return string::Sprintf("%s@IGrad", var_desc_->Name());
return string::Sprintf("%s@IGrad", Name());
}
std::string name_;
framework::VarDesc* var_desc_;
framework::proto::VarType::Type dtype_;
platform::Place place_;
framework::Variable* var_;
VarBase* grads_;
framework::BlockDesc* block_;
bool persistable_;
private:
bool stop_gradient_;
bool persistable_;
OpBase* pre_op_;
std::string pre_op_out_name_;
int pre_op_out_idx_;
@ -223,11 +258,11 @@ class VarBase {
*/
class PYBIND11_HIDDEN OpBase {
public:
OpBase()
: op_desc_(nullptr),
OpBase(const std::string& type)
: type_(type),
trace_id_(-1),
forward_id_(-1),
backward_id_(-1),
trace_id_(-1),
place_(platform::CPUPlace()),
backward_hooks_() {}
@ -249,13 +284,34 @@ class PYBIND11_HIDDEN OpBase {
std::map<std::string, std::vector<VarBase*>> ApplyGrad();
inline std::string Type() const { return type_; }
inline std::string GradOpType(size_t index) const {
PADDLE_ENFORCE_NOT_NULL(grad_op_descs_[index]);
return grad_op_descs_[index]->Type();
}
void RegisterBackwardHooks(const py::object& callable);
void InvokeBackwardHooks();
// One of `op_desc_` or `forward_id_` is set, not both.
// For pure python PyLayer, use `forward_id_`, otherwise, use op_desc_.
framework::OpDesc* op_desc_;
void TrackPreOp(const VarBase* inp_var, const std::string& inp_name) {
if (inp_var->PreOp() && !inp_var->IsStopGradient()) {
VLOG(3) << "add pre op " << inp_var->PreOp()->Type() << " in slot "
<< inp_name;
pre_ops_[inp_name].push_back(inp_var->PreOp());
pre_ops_out_idx_[inp_name].push_back(inp_var->PreOpOutIdx());
} else {
VLOG(3) << "no pre op in slot " << inp_name
<< " input var stop_gradient: " << inp_var->IsStopGradient();
pre_ops_[inp_name].push_back(nullptr);
// pre_ops_out_idx_[inp_name].push_back(-1);
}
}
std::string type_;
// One of `trace_id_` or `forward_id_` is set, not both.
// For pure python PyLayer, use `forward_id_`, otherwise, use trace_id_.
int trace_id_;
int forward_id_;
// When has backward, one of `grad_op_descs_` or `backward_id_` is set,
@ -263,7 +319,6 @@ class PYBIND11_HIDDEN OpBase {
// Note: each fwd op corresponds to a vector of bwd ops.
std::vector<framework::OpDesc*> grad_op_descs_;
int backward_id_;
int trace_id_;
platform::Place place_;
@ -277,8 +332,6 @@ class PYBIND11_HIDDEN OpBase {
// Outputs to a vector of bwd ops.
std::vector<framework::VariableValueMap> grad_output_vars_;
framework::BlockDesc* block_;
std::vector<py::object> backward_hooks_;
};
@ -303,8 +356,8 @@ class PyLayer {
static int NumFuncs();
static std::vector<VarBase*> Apply(int func_id,
const std::vector<VarBase*>& inputs);
static std::vector<framework::Variable*> Apply(
int func_id, const std::vector<VarBase*>& inputs);
static std::vector<framework::Variable*> ApplyGrad(
int func_id, const std::vector<framework::Variable*>& inputs);

File diff suppressed because it is too large Load Diff

@ -17,6 +17,8 @@
#include <map>
#include <set>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "paddle/fluid/framework/op_desc.h"
@ -34,7 +36,8 @@ void CreateGradOp(const framework::OpDesc& op_desc,
framework::OpDesc** grad_op_desc,
std::unordered_map<std::string, std::string>* grad_to_var);
void InitVar(framework::Variable* var, framework::Variable* grad_var);
void InitVar(const VarBase* var, framework::Variable* grad_var,
platform::DeviceContext* dev_ctx);
platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs);
@ -46,7 +49,7 @@ class Tracer {
std::set<std::string> Trace(OpBase* op, const VarBasePtrMap& inputs,
const VarBasePtrMap& outputs,
framework::BlockDesc* block,
framework::AttributeMap attrs_map,
const platform::Place expected_place,
const bool stop_gradient = false);

@ -126,15 +126,20 @@ void ZeroCopyTensor::copy_to_cpu(T *data) {
}
template void ZeroCopyTensor::copy_from_cpu<float>(const float *data);
template void ZeroCopyTensor::copy_from_cpu<int64_t>(const int64_t *data);
template void ZeroCopyTensor::copy_from_cpu<int32_t>(const int32_t *data);
template void ZeroCopyTensor::copy_to_cpu<float>(float *data);
template void ZeroCopyTensor::copy_to_cpu<int64_t>(int64_t *data);
template void ZeroCopyTensor::copy_to_cpu<int32_t>(int32_t *data);
template float *ZeroCopyTensor::data<float>(PaddlePlace *place,
int *size) const;
template int64_t *ZeroCopyTensor::data<int64_t>(PaddlePlace *place,
int *size) const;
template int32_t *ZeroCopyTensor::data<int32_t>(PaddlePlace *place,
int *size) const;
template float *ZeroCopyTensor::mutable_data<float>(PaddlePlace place);
template int64_t *ZeroCopyTensor::mutable_data<int64_t>(PaddlePlace place);
template int32_t *ZeroCopyTensor::mutable_data<int32_t>(PaddlePlace place);
void *ZeroCopyTensor::FindTensor() const {
PADDLE_ENFORCE(!name_.empty(),

@ -139,9 +139,8 @@ static void TensorAssignData(PaddleTensor *tensor,
}
template <typename T>
static int ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
const std::vector<std::vector<T>> &data) {
int size{0};
static void ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
const std::vector<std::vector<T>> &data) {
auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
int c = 0;
for (const auto &f : data) {
@ -149,7 +148,15 @@ static int ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
ptr[c++] = v;
}
}
return size;
}
template <typename T>
static void ZeroCopyTensorAssignData(ZeroCopyTensor *tensor,
const PaddleBuf &data) {
auto *ptr = tensor->mutable_data<T>(PaddlePlace::kCPU);
for (size_t i = 0; i < data.length() / sizeof(T); i++) {
ptr[i] = *(reinterpret_cast<T *>(data.data()) + i);
}
}
static bool CompareTensor(const PaddleTensor &a, const PaddleTensor &b) {

@ -107,6 +107,9 @@ void SetConfig(AnalysisConfig *cfg) {
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
if (FLAGS_zero_copy) {
cfg->SwitchUseFeedFetchOps(false);
}
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
@ -131,7 +134,7 @@ TEST(Analyzer_Pyramid_DNN, profile) {
TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
input_slots_all, &outputs, FLAGS_num_threads);
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data && !FLAGS_zero_copy) {
PADDLE_ENFORCE_EQ(outputs.size(), 1UL);
size_t size = GetSize(outputs[0]);
PADDLE_ENFORCE_GT(size, 0);
@ -166,6 +169,19 @@ TEST(Analyzer_Pyramid_DNN, compare) {
reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}
// Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy
TEST(Analyzer_Pyramid_DNN, compare_zero_copy) {
AnalysisConfig cfg;
SetConfig(&cfg);
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
std::vector<std::string> outputs_name;
outputs_name.emplace_back("cos_sim_2.tmp_0");
CompareAnalysisAndZeroCopy(reinterpret_cast<PaddlePredictor::Config *>(&cfg),
input_slots_all, outputs_name);
}
// Compare Deterministic result
TEST(Analyzer_Pyramid_DNN, compare_determine) {
AnalysisConfig cfg;

@ -207,6 +207,9 @@ void SetConfig(AnalysisConfig *cfg) {
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
if (FLAGS_zero_copy) {
cfg->SwitchUseFeedFetchOps(false);
}
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
@ -285,133 +288,17 @@ TEST(Analyzer_rnn1, multi_thread) {
input_slots_all, &outputs, 2 /* multi_thread */);
}
// Validate that the AnalysisPredictor + ZeroCopyTensor really works by testing
// on the complex RNN1 model.
TEST(Analyzer_rnn1, ZeroCopy) {
AnalysisConfig config;
SetConfig(&config);
config.SwitchUseFeedFetchOps(false);
PaddlePlace place;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
config.SwitchUseFeedFetchOps(true);
auto native_predictor =
CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
config.SwitchUseFeedFetchOps(
true); // the analysis predictor needs feed/fetch.
auto analysis_predictor = CreatePaddlePredictor<AnalysisConfig>(config);
#define NEW_TENSOR(name__) \
auto name__##_tensor = predictor->GetInputTensor(#name__);
NEW_TENSOR(data_lod_attention);
NEW_TENSOR(cell_init);
NEW_TENSOR(data);
NEW_TENSOR(week);
NEW_TENSOR(minute);
NEW_TENSOR(hidden_init);
// Prepare data for AnalysisPredictor
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
PrepareZeroCopyInputs(data_lod_attention_tensor.get(), cell_init_tensor.get(),
data_tensor.get(), hidden_init_tensor.get(),
week_tensor.get(), minute_tensor.get(), &data,
FLAGS_batch_size);
// Prepare data for NativePredictor
std::vector<std::vector<PaddleTensor>> native_inputs;
SetInput(&native_inputs);
std::vector<PaddleTensor> native_outputs;
std::vector<PaddleTensor> analysis_outputs;
auto output_tensor = predictor->GetOutputTensor("final_output.tmp_1");
// Run analysis predictor
int num_ops;
auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
ASSERT_EQ(fuse_statis.at("fc_fuse"), 1);
ASSERT_EQ(fuse_statis.at("fc_nobias_lstm_fuse"), 2); // bi-directional LSTM
ASSERT_EQ(fuse_statis.at("seq_concat_fc_fuse"), 1);
ASSERT_EQ(num_ops,
13); // After graph optimization, only 13 operators exists.
Timer timer;
double total_time{0};
for (int i = 0; i < FLAGS_repeat; i++) {
timer.tic();
predictor->ZeroCopyRun();
total_time += timer.toc();
}
LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(*output_tensor);
ASSERT_TRUE(native_predictor->Run(native_inputs.front(), &native_outputs));
LOG(INFO) << "native output " << DescribeTensor(native_outputs.front());
int output_size{0}; // this is the number of elements not memory size
auto *zero_copy_data = output_tensor->data<float>(&place, &output_size);
auto *native_data = static_cast<float *>(native_outputs.front().data.data());
for (int i = 0; i < output_size; i++) {
EXPECT_NEAR(zero_copy_data[i], native_data[i], 1e-3);
}
}
TEST(Analyzer_rnn1, ZeroCopyMultiThread) {
AnalysisConfig config;
SetConfig(&config);
config.SwitchUseFeedFetchOps(false);
#define NEW_TENSOR(name__) \
auto name__##_tensor = predictor->GetInputTensor(#name__);
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
predictors.emplace_back(CreatePaddlePredictor<AnalysisConfig>(config));
for (int tid = 1; tid < FLAGS_num_threads; tid++) {
predictors.emplace_back(predictors.front()->Clone());
}
double total_time_of_threads{0};
std::vector<std::thread> threads;
for (int tid = 0; tid < FLAGS_num_threads; tid++) {
threads.emplace_back([&, tid] {
auto &predictor = predictors[tid];
NEW_TENSOR(data_lod_attention);
NEW_TENSOR(cell_init);
NEW_TENSOR(data);
NEW_TENSOR(week);
NEW_TENSOR(minute);
NEW_TENSOR(hidden_init);
// Prepare data for AnalysisPredictor
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
Timer timer;
double total_time{0};
for (int i = 0; i < FLAGS_repeat; i++) {
PrepareZeroCopyInputs(data_lod_attention_tensor.get(),
cell_init_tensor.get(), data_tensor.get(),
hidden_init_tensor.get(), week_tensor.get(),
minute_tensor.get(), &data, FLAGS_batch_size);
timer.tic();
predictor->ZeroCopyRun();
total_time += timer.toc();
}
total_time_of_threads += total_time;
LOG(INFO) << "thread time: " << total_time / FLAGS_repeat;
});
}
for (auto &t : threads) {
t.join();
}
// Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy
TEST(Analyzer_rnn1, compare_zero_copy) {
AnalysisConfig cfg;
SetConfig(&cfg);
LOG(INFO) << "average time: "
<< total_time_of_threads / FLAGS_num_threads / FLAGS_repeat;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
std::vector<std::string> outputs_name;
outputs_name.emplace_back("final_output.tmp_1");
CompareAnalysisAndZeroCopy(reinterpret_cast<PaddlePredictor::Config *>(&cfg),
input_slots_all, outputs_name);
}
} // namespace inference

@ -144,6 +144,9 @@ void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrDebug();
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
if (FLAGS_zero_copy) {
cfg->SwitchUseFeedFetchOps(false);
}
if (use_mkldnn) {
cfg->EnableMKLDNN();
}
@ -184,10 +187,10 @@ TEST(Analyzer_seq_pool1, compare_determine) {
input_slots_all);
}
void analysis_fuse_statis(bool use_zerocopy) {
// Check the fuse status
TEST(Analyzer_seq_pool1, fuse_statis) {
AnalysisConfig cfg;
SetConfig(&cfg);
cfg.SwitchUseFeedFetchOps(!use_zerocopy);
int num_ops;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
@ -203,137 +206,17 @@ void analysis_fuse_statis(bool use_zerocopy) {
EXPECT_EQ(num_ops, 171);
}
// Check the fuse status
TEST(Analyzer_seq_pool1, fuse_statis) { analysis_fuse_statis(false); }
void PrepareZeroCopyInputs(
const std::unique_ptr<PaddlePredictor> &predictor,
std::vector<std::unique_ptr<ZeroCopyTensor>> *inputs) {
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
// only feed one batch
const auto &one_batch = data.NextBatch();
inputs->clear();
for (size_t i = 0; i < one_batch.size(); ++i) {
auto &slot = one_batch[i];
auto tensor = predictor->GetInputTensor(slot.name + "_embed");
tensor->Reshape(slot.shape);
tensor->SetLoD({slot.lod});
ZeroCopyTensorAssignData<float>(tensor.get(), slot.data);
inputs->emplace_back(std::move(tensor));
}
}
// return the output values
std::vector<float> zerocopy_profile(int repeat_times) {
AnalysisConfig config;
SetConfig(&config);
config.SwitchUseFeedFetchOps(false);
auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
std::vector<std::unique_ptr<ZeroCopyTensor>> inputs;
PrepareZeroCopyInputs(predictor, &inputs);
auto output_tensor = predictor->GetOutputTensor(out_var_name);
Timer timer;
LOG(INFO) << "Warm up run...";
timer.tic();
predictor->ZeroCopyRun();
PrintTime(FLAGS_batch_size, 1, 1, 0, timer.toc(), 1);
if (FLAGS_profile) {
paddle::platform::ResetProfiler();
}
LOG(INFO) << "Run " << repeat_times << " times...";
timer.tic();
for (int i = 0; i < repeat_times; i++) {
predictor->ZeroCopyRun();
}
PrintTime(FLAGS_batch_size, repeat_times, 1, 0, timer.toc() / repeat_times,
1);
LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(*output_tensor);
PaddlePlace place;
int output_size{0};
auto *pdata = output_tensor->data<float>(&place, &output_size);
std::vector<float> res(output_size);
for (int i = 0; i < output_size; ++i) {
res[i] = pdata[i];
}
return res;
}
TEST(Analyzer_seq_pool1, zerocopy_profile) { zerocopy_profile(FLAGS_repeat); }
TEST(Analyzer_seq_pool1, zerocopy_profile_threads) {
AnalysisConfig config;
SetConfig(&config);
config.SwitchUseFeedFetchOps(false);
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
predictors.emplace_back(CreatePaddlePredictor<AnalysisConfig>(config));
for (int tid = 1; tid < FLAGS_num_threads; tid++) {
predictors.emplace_back(predictors.front()->Clone());
}
double total_time_of_threads{0};
std::vector<std::thread> threads;
for (int tid = 0; tid < FLAGS_num_threads; tid++) {
threads.emplace_back([&, tid] {
auto &predictor = predictors[tid];
std::vector<std::unique_ptr<ZeroCopyTensor>> inputs;
PrepareZeroCopyInputs(predictor, &inputs);
auto output_tensor = predictor->GetOutputTensor(out_var_name);
Timer timer;
double total_time{0};
LOG(INFO) << "Warm up run...";
timer.tic();
predictor->ZeroCopyRun();
PrintTime(FLAGS_batch_size, 1, FLAGS_num_threads, tid, timer.toc(), 1);
if (FLAGS_profile) {
paddle::platform::ResetProfiler();
}
int repeat_times = FLAGS_repeat;
LOG(INFO) << "Run " << repeat_times << " times...";
timer.tic();
for (int i = 0; i < repeat_times; i++) {
predictor->ZeroCopyRun();
}
total_time += timer.toc();
total_time_of_threads += total_time;
LOG(INFO) << "thread time: " << total_time / repeat_times;
});
}
for (auto &t : threads) {
t.join();
}
LOG(INFO) << "average time: "
<< total_time_of_threads / FLAGS_num_threads / FLAGS_repeat;
}
TEST(Analyzer_seq_pool1, zerocopy_fuse_statis) { analysis_fuse_statis(true); }
// Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy
TEST(Analyzer_seq_pool1, compare_zero_copy) {
AnalysisConfig cfg;
SetConfig(&cfg);
TEST(Analyzer_seq_pool1, zerocopy_compare_native) {
AnalysisConfig config;
SetConfig(&config);
config.SwitchUseFeedFetchOps(true);
auto predictor = CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
std::vector<PaddleTensor> native_outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
SetInput(&input_slots_all);
ASSERT_TRUE(predictor->Run(input_slots_all[0], &native_outputs));
EXPECT_EQ(native_outputs.size(), 1UL);
auto zerocopy_output = zerocopy_profile(1);
EXPECT_EQ(zerocopy_output.size() * sizeof(float),
native_outputs.front().data.length());
auto *native_data = static_cast<float *>(native_outputs.front().data.data());
for (size_t i = 0; i < zerocopy_output.size(); ++i) {
EXPECT_LT(
std::fabs((zerocopy_output[i] - native_data[i]) / zerocopy_output[i]),
1e-3);
}
std::vector<std::string> outputs_name;
outputs_name.emplace_back(out_var_name);
CompareAnalysisAndZeroCopy(reinterpret_cast<PaddlePredictor::Config *>(&cfg),
input_slots_all, outputs_name);
}
} // namespace analysis

File diff suppressed because it is too large Load Diff

@ -30,19 +30,20 @@ function(inference_download_and_uncompress INSTALL_DIR URL FILENAME)
${EXTERNAL_PROJECT_NAME}
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${INSTALL_DIR}
URL ${URL}/${FILENAME}
DOWNLOAD_COMMAND wget -q -O ${INSTALL_DIR}/${FILENAME} ${URL}/${FILENAME} &&
${CMAKE_COMMAND} -E tar xzf ${INSTALL_DIR}/${FILENAME}
DOWNLOAD_DIR ${INSTALL_DIR}
DOWNLOAD_NO_PROGRESS 1
CONFIGURE_COMMAND ""
BUILD_COMMAND ""
UPDATE_COMMAND ""
INSTALL_COMMAND ${CMAKE_COMMAND} -E copy_directory ${UNPACK_DIR} ${INSTALL_DIR}
INSTALL_COMMAND ""
)
endfunction()
set(WORD2VEC_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/word2vec")
if (NOT EXISTS ${WORD2VEC_INSTALL_DIR})
inference_download_and_uncompress(${WORD2VEC_INSTALL_DIR} ${INFERENCE_URL} "word2vec.inference.model.tar.gz")
if(NOT EXISTS ${WORD2VEC_INSTALL_DIR} AND NOT WIN32)
inference_download_and_uncompress(${WORD2VEC_INSTALL_DIR} ${INFERENCE_URL} "word2vec.inference.model.tar.gz")
endif()
set(WORD2VEC_MODEL_DIR "${WORD2VEC_INSTALL_DIR}/word2vec.inference.model")

@ -14,6 +14,7 @@
#include "paddle/fluid/memory/allocation/legacy_allocator.h"
#include <memory>
#include <string>
#include <utility>
#include <vector>

@ -1,4 +1,5 @@
include(operators)
register_operators(DEPS naive_executor)
cc_library(while_op_helper SRCS while_op_helper.cc DEPS operator)
file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\n")

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save