Enhance fused_elementwise_activation op and add python api in contrib.layers (#17236)
* Enhance fused_elementwise_activation op. test=develop * Move the api fused_elementwise_activation to contrib. test=develop * Add including files. test=develop * Add the support of sigmoid in fused_elementwise_activetion op. * Update API.spec. test=developdependabot/pip/python/requests-2.20.0
parent
ac92e4c066
commit
8fd39f3e99
@ -0,0 +1,21 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
from . import nn
|
||||
from .nn import *
|
||||
|
||||
__all__ = []
|
||||
__all__ += nn.__all__
|
@ -0,0 +1,90 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Contrib layers just related to the neural network.
|
||||
"""
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import six
|
||||
import os
|
||||
import inspect
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
|
||||
__all__ = ['fused_elemwise_activation', ]
|
||||
|
||||
|
||||
def fused_elemwise_activation(x,
|
||||
y,
|
||||
functor_list,
|
||||
axis=-1,
|
||||
scale=0.0,
|
||||
save_intermediate_out=True):
|
||||
"""
|
||||
**Fused elementwise_add/mul and activation layers**
|
||||
|
||||
This function computes an elementwise_add/mul cooperated with an activation.
|
||||
|
||||
.. math::
|
||||
|
||||
out = Unary(Binary(x, y))
|
||||
|
||||
or
|
||||
|
||||
.. math::
|
||||
|
||||
out = Binary(x, Unary(y))
|
||||
|
||||
Unary operators can be: `scale`, `relu`, `tanh`. Binary operators can be:
|
||||
`elementwise_add`, `elementwise_mul`.
|
||||
|
||||
Args:
|
||||
x (Variable): left operation of the binary operator.
|
||||
y (Variable): right operator of the binary operator.
|
||||
functor_list (list of str): types of operator which will be executed
|
||||
by this layer. For example, ['elementwise_add', 'relu']
|
||||
(out = elementwise_add(x, relu(y))),
|
||||
or ['relu', 'elemmentwise_add'] (out = relu(elementwise_add(x, y))).
|
||||
axis (int32, default -1): axis of elementwise op.
|
||||
scale (float32, default 0): parameter of scale op.
|
||||
save_intermediate_out (bool, default True): whether to save the
|
||||
intermediate result, Unary(y) or Binary(x, y).
|
||||
|
||||
Returns:
|
||||
Variable: The computation result.
|
||||
"""
|
||||
if isinstance(functor_list, str):
|
||||
functor_list = functor_list.split(',')
|
||||
|
||||
if not isinstance(functor_list, list) or len(functor_list) != 2:
|
||||
raise ValueError(
|
||||
'functor_list should be a list of str, and the length should be 2.')
|
||||
|
||||
helper = LayerHelper('fused_elemwise_activation', **locals())
|
||||
out = helper.create_variable_for_type_inference(dtype=x.dtype)
|
||||
intermediate_out = helper.create_variable_for_type_inference(dtype=x.dtype)
|
||||
helper.append_op(
|
||||
type='fused_elemwise_activation',
|
||||
inputs={'X': x,
|
||||
'Y': y},
|
||||
outputs={'Out': out,
|
||||
'IntermediateOut': intermediate_out},
|
||||
attrs={
|
||||
'axis': axis,
|
||||
'scale': scale,
|
||||
'save_intermediate_out': save_intermediate_out,
|
||||
'functor_list': functor_list
|
||||
})
|
||||
return out
|
Loading…
Reference in new issue