@ -57,19 +57,21 @@ def evaluator(*attrs):
return impl
def evaluator_base ( input ,
type ,
label = None ,
weight = None ,
name = None ,
chunk_scheme = None ,
num_chunk_types = None ,
classification_threshold = None ,
positive_label = None ,
dict_file = None ,
result_file = None ,
num_results = None ,
delimited = None ) :
def evaluator_base (
input ,
type ,
label = None ,
weight = None ,
name = None ,
chunk_scheme = None ,
num_chunk_types = None ,
classification_threshold = None ,
positive_label = None ,
dict_file = None ,
result_file = None ,
num_results = None ,
delimited = None ,
excluded_chunk_types = None , ) :
"""
Evaluator will evaluate the network status while training / testing .
@ -127,7 +129,8 @@ def evaluator_base(input,
positive_label = positive_label ,
dict_file = dict_file ,
result_file = result_file ,
delimited = delimited )
delimited = delimited ,
excluded_chunk_types = excluded_chunk_types , )
@evaluator ( EvaluatorAttribute . FOR_CLASSIFICATION )
@ -330,7 +333,8 @@ def chunk_evaluator(
label ,
chunk_scheme ,
num_chunk_types ,
name = None , ) :
name = None ,
excluded_chunk_types = None , ) :
"""
Chunk evaluator is used to evaluate segment labelling accuracy for a
sequence . It calculates the chunk detection F1 score .
@ -376,6 +380,8 @@ def chunk_evaluator(
: param num_chunk_types : number of chunk types other than " other "
: param name : The Evaluator name , it is optional .
: type name : basename | None
: param excluded_chunk_types : chunks of these types are not considered
: type excluded_chunk_types : list of integer | [ ]
"""
evaluator_base (
name = name ,
@ -383,7 +389,8 @@ def chunk_evaluator(
input = input ,
label = label ,
chunk_scheme = chunk_scheme ,
num_chunk_types = num_chunk_types )
num_chunk_types = num_chunk_types ,
excluded_chunk_types = excluded_chunk_types , )
@evaluator ( EvaluatorAttribute . FOR_UTILS )