|
|
|
|
@ -22,6 +22,99 @@ limitations under the License. */
|
|
|
|
|
namespace paddle {
|
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
|
|
// Wrap RowwiseMean and ColwiseMean.
|
|
|
|
|
// Reuse the cpu codes and replace the gpu codes with cublas_gemv, which is
|
|
|
|
|
// significantly faster. Unlike the RowwiseMean and ColwiseMean, the
|
|
|
|
|
// implementation only considers 2D.
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
|
struct RowwiseMean2D {
|
|
|
|
|
RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx);
|
|
|
|
|
|
|
|
|
|
void operator()(const platform::DeviceContext& context,
|
|
|
|
|
const framework::Tensor& input, framework::Tensor* vec);
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class RowwiseMean2D<platform::CUDADeviceContext, T> {
|
|
|
|
|
public:
|
|
|
|
|
RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx)
|
|
|
|
|
: left_(left), right_(right) {
|
|
|
|
|
framework::DDim ones_dim({right_});
|
|
|
|
|
divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
|
|
|
|
|
math::set_constant(dev_ctx, &divisor_, 1.0 / right);
|
|
|
|
|
}
|
|
|
|
|
void operator()(const platform::CUDADeviceContext& context,
|
|
|
|
|
const framework::Tensor& input, framework::Tensor* out) {
|
|
|
|
|
math::gemv<platform::CUDADeviceContext, T>(
|
|
|
|
|
context, false, left_, right_, 1., input.data<T>(), divisor_.data<T>(),
|
|
|
|
|
0., out->data<T>());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
int left_;
|
|
|
|
|
int right_;
|
|
|
|
|
framework::Tensor divisor_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class RowwiseMean2D<platform::CPUDeviceContext, T> {
|
|
|
|
|
public:
|
|
|
|
|
RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx) {}
|
|
|
|
|
|
|
|
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
|
|
|
const framework::Tensor& input, framework::Tensor* out) {
|
|
|
|
|
row_mean_(context, input, out);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
math::RowwiseMean<platform::CPUDeviceContext, T> row_mean_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
|
struct ColwiseSum2D {
|
|
|
|
|
ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx);
|
|
|
|
|
|
|
|
|
|
void operator()(const platform::DeviceContext& context,
|
|
|
|
|
const framework::Tensor& input, framework::Tensor* vec);
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class ColwiseSum2D<platform::CUDADeviceContext, T> {
|
|
|
|
|
public:
|
|
|
|
|
ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx)
|
|
|
|
|
: left_(left), right_(right) {
|
|
|
|
|
framework::DDim ones_dim({left_});
|
|
|
|
|
divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
|
|
|
|
|
math::set_constant(dev_ctx, &divisor_, 1.0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void operator()(const platform::CUDADeviceContext& context,
|
|
|
|
|
const framework::Tensor& input, framework::Tensor* out) {
|
|
|
|
|
math::gemv<platform::CUDADeviceContext, T>(
|
|
|
|
|
context, true, left_, right_, 1., input.data<T>(), divisor_.data<T>(),
|
|
|
|
|
0., out->data<T>());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
int left_;
|
|
|
|
|
int right_;
|
|
|
|
|
framework::Tensor divisor_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
class ColwiseSum2D<platform::CPUDeviceContext, T> {
|
|
|
|
|
public:
|
|
|
|
|
ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx) {}
|
|
|
|
|
|
|
|
|
|
void operator()(const platform::CPUDeviceContext& context,
|
|
|
|
|
const framework::Tensor& input, framework::Tensor* out) {
|
|
|
|
|
col_wise_(context, input, out);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
math::ColwiseSum<platform::CPUDeviceContext, T> col_wise_;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
struct SubAndSquareFunctor {
|
|
|
|
|
inline HOSTDEVICE T operator()(T a, T b) const { return (a - b) * (a - b); }
|
|
|
|
|
@ -67,15 +160,15 @@ using DataLayout = framework::DataLayout;
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
|
class LayerNormKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
|
|
|
const float epsilon = ctx.Attr<float>("epsilon");
|
|
|
|
|
auto *scale = ctx.Input<Tensor>("Scale");
|
|
|
|
|
auto *bias = ctx.Input<Tensor>("Bias");
|
|
|
|
|
auto* scale = ctx.Input<Tensor>("Scale");
|
|
|
|
|
auto* bias = ctx.Input<Tensor>("Bias");
|
|
|
|
|
auto x = *ctx.Input<Tensor>("X");
|
|
|
|
|
|
|
|
|
|
auto *y = ctx.Output<Tensor>("Y");
|
|
|
|
|
auto *mean = ctx.Output<Tensor>("Mean");
|
|
|
|
|
auto *var = ctx.Output<Tensor>("Variance");
|
|
|
|
|
auto* y = ctx.Output<Tensor>("Y");
|
|
|
|
|
auto* mean = ctx.Output<Tensor>("Mean");
|
|
|
|
|
auto* var = ctx.Output<Tensor>("Variance");
|
|
|
|
|
const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
|
|
|
|
|
|
|
|
|
|
const auto x_dims = x.dims();
|
|
|
|
|
@ -94,8 +187,8 @@ class LayerNormKernel : public framework::OpKernel<T> {
|
|
|
|
|
out.ShareDataWith(*y);
|
|
|
|
|
out.Resize(matrix_shape);
|
|
|
|
|
|
|
|
|
|
auto &dev_ctx = ctx.template device_context<DeviceContext>();
|
|
|
|
|
math::RowwiseMean<DeviceContext, T> row_mean;
|
|
|
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
|
|
|
RowwiseMean2D<DeviceContext, T> row_mean(left, right, ctx.device_context());
|
|
|
|
|
|
|
|
|
|
// get mean
|
|
|
|
|
row_mean(dev_ctx, x, mean);
|
|
|
|
|
@ -126,31 +219,32 @@ class LayerNormKernel : public framework::OpKernel<T> {
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
|
class LayerNormGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
public:
|
|
|
|
|
void Compute(const framework::ExecutionContext &ctx) const override {
|
|
|
|
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
|
|
|
|
const float epsilon = ctx.Attr<float>("epsilon");
|
|
|
|
|
auto x = *ctx.Input<Tensor>("X");
|
|
|
|
|
auto *y = ctx.Input<Tensor>("Y");
|
|
|
|
|
auto *mean = ctx.Input<Tensor>("Mean");
|
|
|
|
|
auto *var = ctx.Input<Tensor>("Variance");
|
|
|
|
|
auto *scale = ctx.Input<Tensor>("Scale");
|
|
|
|
|
auto *bias = ctx.Input<Tensor>("Bias");
|
|
|
|
|
auto* y = ctx.Input<Tensor>("Y");
|
|
|
|
|
auto* mean = ctx.Input<Tensor>("Mean");
|
|
|
|
|
auto* var = ctx.Input<Tensor>("Variance");
|
|
|
|
|
auto* scale = ctx.Input<Tensor>("Scale");
|
|
|
|
|
auto* bias = ctx.Input<Tensor>("Bias");
|
|
|
|
|
auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y"));
|
|
|
|
|
const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
|
|
|
|
|
|
|
|
|
|
// init output
|
|
|
|
|
auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
|
|
|
|
|
auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
|
|
|
|
|
auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
|
|
|
|
|
auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
|
|
|
|
|
|
|
|
|
|
const auto &x_dims = x.dims();
|
|
|
|
|
const auto& x_dims = x.dims();
|
|
|
|
|
auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
|
|
|
|
|
int left = static_cast<int>(matrix_dim[0]);
|
|
|
|
|
int right = static_cast<int>(matrix_dim[1]);
|
|
|
|
|
framework::DDim matrix_shape({left, right});
|
|
|
|
|
|
|
|
|
|
d_y.Resize(matrix_shape);
|
|
|
|
|
auto &dev_ctx = ctx.template device_context<DeviceContext>();
|
|
|
|
|
math::ColwiseSum<DeviceContext, T> colwise_sum;
|
|
|
|
|
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
|
|
|
|
ColwiseSum2D<DeviceContext, T> colwise_sum(left, right,
|
|
|
|
|
ctx.device_context());
|
|
|
|
|
|
|
|
|
|
Tensor temp;
|
|
|
|
|
Tensor temp_norm;
|
|
|
|
|
@ -190,7 +284,8 @@ class LayerNormGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
Tensor temp_vec;
|
|
|
|
|
temp_vec.mutable_data<T>(vec_shape, ctx.GetPlace());
|
|
|
|
|
|
|
|
|
|
math::RowwiseMean<DeviceContext, T> row_mean;
|
|
|
|
|
RowwiseMean2D<DeviceContext, T> row_mean(left, right,
|
|
|
|
|
ctx.device_context());
|
|
|
|
|
|
|
|
|
|
if (d_scale) {
|
|
|
|
|
// dy_dx
|
|
|
|
|
|