add fuse_bn_act op (#27230)

* add fused_bn_add_relu op
revert-27520-disable_pr
Zhang Ting 5 years ago committed by GitHub
parent 5034d181f3
commit 906e7f921e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -127,7 +127,8 @@ function(op_library TARGET)
"tensor_array_read_write_op" "tensorrt_engine_op" "conv_fusion_op"
"fusion_transpose_flatten_concat_op" "fusion_conv_inception_op"
"sync_batch_norm_op" "dgc_op" "fused_fc_elementwise_layernorm_op"
"multihead_matmul_op" "fusion_group_op" "fused_bn_activation_op" "fused_embedding_eltwise_layernorm_op" "fusion_gru_op")
"multihead_matmul_op" "fusion_group_op" "fused_bn_activation_op" "fused_embedding_eltwise_layernorm_op" "fusion_gru_op"
"fused_bn_add_activation_op")
if ("${TARGET}" STREQUAL "${manual_pybind_op}")
set(pybind_flag 1)
endif()

@ -8,7 +8,8 @@ register_operators(EXCLUDES
multihead_matmul_op
fused_embedding_eltwise_layernorm_op
fusion_group_op
fusion_gru_op)
fusion_gru_op
fused_bn_add_activation_op)
# fusion_gru_op does not have CUDA kernel
op_library(fusion_gru_op)
@ -47,4 +48,9 @@ if (WITH_GPU)
file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(fusion_group);\n")
cc_test(test_fusion_group_op SRCS fusion_group_op_test.cc DEPS fusion_group_op)
endif()
# fused_bn_add_activation
if (NOT ${CUDNN_VERSION} VERSION_LESS 7401)
op_library(fused_bn_add_activation_op)
file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(fused_bn_add_activation);\n")
endif()
endif()

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

@ -0,0 +1,106 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory>
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/grad_op_desc_maker.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class FusedBatchNormAddActOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class FusedBatchNormAddActGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
class FusedBatchNormAddActOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override;
};
template <typename T>
class FusedBatchNormAddActGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType(this->ForwardOpType() + "_grad");
op->SetInput("X", this->Input("X"));
op->SetInput("Z", this->Input("Z"));
op->SetInput("Y", this->Output("Y"));
op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
op->SetInput("Scale", this->Input("Scale"));
op->SetInput("Bias", this->Input("Bias"));
op->SetInput("SavedMean", this->Output("SavedMean"));
op->SetInput("SavedVariance", this->Output("SavedVariance"));
op->SetInput("ReserveSpace", this->Output("ReserveSpace"));
op->SetAttrMap(this->Attrs());
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetOutput(framework::GradVarName("Z"), this->InputGrad("Z"));
op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
}
};
class FusedBatchNormAddActOpInferVarType
: public framework::PassInDtypeAndVarTypeToOutput {
protected:
std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
const override {
static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Y"}};
return m;
}
};
template <typename DeviceContext, typename T>
class FusedBatchNormAddActKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override;
};
template <typename DeviceContext, typename T>
class FusedBatchNormAddActGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override;
};
} // namespace operators
} // namespace paddle

@ -45,6 +45,7 @@ from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
from paddle.fluid import core
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.entry_attr import ProbabilityEntry, CountFilterEntry
from paddle.fluid.framework import Variable, convert_np_dtype_to_dtype_
@ -57,7 +58,7 @@ __all__ = [
'multiclass_nms2', 'search_pyramid_hash', 'shuffle_batch', 'partial_concat',
'sparse_embedding', 'partial_sum', 'tdm_child', 'rank_attention',
'tdm_sampler', 'batch_fc', '_pull_box_extended_sparse', 'bilateral_slice',
'correlation'
'correlation', 'fused_bn_add_act'
]
@ -1625,3 +1626,191 @@ def correlation(x,
},
outputs={"Output": output})
return output
def fused_bn_add_act(x,
y,
momentum=0.9,
epsilon=1e-05,
param_attr=None,
bias_attr=None,
moving_mean_name=None,
moving_variance_name=None,
act=None,
name=None):
"""
This Op performs batch norm on input x, and adds the result to input y. Then
it performs activation on the sum. The data format of inputs must be NHWC
`[batch, in_height, in_width, in_channels]`.
Args:
x(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type
is float16.
y(Tensor): The rank of input tensor can be 2, 3, 4, 5. The data type
is float16.
momentum(float|Tensor, optional): The value used for the moving_mean and
moving_var computation. This should be a float number or a tensor with
shape [1] and data type as float32. The updated formula is:
:math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
:math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
Default is 0.9.
epsilon(float, optional): A value added to the denominator for
numerical stability. Default is 1e-5.
param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as param_attr, the name of scale can be set in ParamAttr.
If the Initializer of the param_attr is not set, the parameter is initialized
with Xavier. Default: None.
bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
If the Initializer of the bias_attr is not set, the bias is initialized zero.
Default: None.
moving_mean_name(str, optional): The name of moving_mean which store the global Mean. If it
is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
will save global mean with the string.
moving_variance_name(str, optional): The name of the moving_variance which store the global Variance.
If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
will save global variance with the string.
act(string, optional): Activation type, linear|relu|prelu|...
name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`.
Usually name is no need to set and None by default.
Examples:
.. code-block:: python
import paddle.fluid as fluid
def build_program(main_program, startup_program):
with fluid.program_guard(main_program, startup_program):
x = fluid.layers.data(name='x', shape=[1, 28, 28], dtype='float32')
y = fluid.layers.data(name="y", shape=[1], dtype='int64')
conv1_1 = fluid.layers.conv2d(
input=x,
filter_size=3,
num_filters=32,
stride=1,
padding=1,
act=None,
bias_attr=False,
data_format='NHWC')
conv1_2 = fluid.layers.conv2d(
input=x,
filter_size=3,
num_filters=32,
stride=1,
padding=1,
act=None,
bias_attr=False,
data_format='NHWC')
bn = fluid.layers.batch_norm(
input=conv1_1,
act=None,
data_layout='NHWC')
fused_bn_add_act = fluid.contrib.layers.fused_bn_add_act(conv1_2, bn)
prediction = fluid.layers.fc(input=fused_bn_add_act, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=y)
loss = fluid.layers.mean(loss)
sgd = fluid.optimizer.SGD(learning_rate=0.001)
sgd = fluid.contrib.mixed_precision.decorate(
sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0)
sgd.minimize(loss)
return x, y, loss
iters = 5
batch_size = 16
support_gpu = fluid.is_compiled_with_cuda()
if support_gpu:
main_program = fluid.Program()
startup_program = fluid.Program()
place = fluid.CUDAPlace(0)
x, y, loss = build_program(main_program, startup_program)
feeder = fluid.DataFeeder(feed_list=[x, y], place=place)
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=batch_size)
exe = fluid.Executor(place)
scope = fluid.Scope()
with fluid.scope_guard(scope):
exe.run(startup_program)
for _ in range(iters):
data = next(train_reader())
loss_v = exe.run(main_program, feed=feeder.feed(data), fetch_list=[loss])
"""
helper = LayerHelper('fused_bn_add_act', **locals())
check_variable_and_dtype(x, 'input', ['float16', 'float32', 'float64'],
'fused_bn_add_act')
check_variable_and_dtype(y, 'input', ['float16', 'float32', 'float64'],
'fused_bn_add_act')
bn_param_dtype = core.VarDesc.VarType.FP32
x_shape = x.shape
channel_num = x_shape[-1]
param_shape = [channel_num]
# create parameter
scale = helper.create_parameter(
attr=helper.param_attr,
shape=param_shape,
dtype=bn_param_dtype,
default_initializer=Constant(1.0))
bias = helper.create_parameter(
attr=helper.bias_attr,
shape=param_shape,
dtype=bn_param_dtype,
is_bias=True)
mean = helper.create_parameter(
attr=ParamAttr(
name=moving_mean_name, initializer=Constant(0.0), trainable=False),
shape=param_shape,
dtype=bn_param_dtype)
mean.stop_gradient = True
variance = helper.create_parameter(
attr=ParamAttr(
name=moving_variance_name,
initializer=Constant(1.0),
trainable=False),
shape=param_shape,
dtype=bn_param_dtype)
variance.stop_gradient = True
# create output
# mean and mean_out share the same memory
mean_out = mean
# variance and variance out share the same memory
variance_out = variance
saved_mean = helper.create_variable_for_type_inference(
dtype=bn_param_dtype, stop_gradient=True)
saved_variance = helper.create_variable_for_type_inference(
dtype=bn_param_dtype, stop_gradient=True)
reserve_space = helper.create_variable_for_type_inference(
dtype=core.VarDesc.VarType.FP16, stop_gradient=True)
batch_norm_out = helper.create_variable_for_type_inference(
core.VarDesc.VarType.FP16)
inputs = {
"X": x,
"Z": y,
"Scale": scale,
"Bias": bias,
}
attrs = {"epsilon": epsilon, 'momentum': momentum}
outputs = {
"Y": batch_norm_out,
"MeanOut": mean_out,
"VarianceOut": variance_out,
"SavedMean": saved_mean,
"SavedVariance": saved_variance,
"ReserveSpace": reserve_space
}
helper.append_op(
type="fused_bn_add_activation",
inputs=inputs,
outputs=outputs,
attrs=attrs)
return batch_norm_out

@ -135,6 +135,7 @@ gray_list = {
'get_tensor_from_selected_rows',
'sign',
'cast',
'fused_bn_add_activation',
}
'''
# The set of ops that don't support fp16 calculation

@ -69,8 +69,10 @@ def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
]
for in_name in op.input_names:
if src_dtype == core.VarDesc.VarType.FP32 and op.type == 'batch_norm':
if in_name != 'X':
if src_dtype == core.VarDesc.VarType.FP32 and op.type in [
'batch_norm', 'fused_bn_add_activation'
]:
if in_name not in {'X', 'Z'}:
continue
for in_var_name in op.input(in_name):
in_var = block.var(in_var_name)
@ -102,7 +104,8 @@ def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
op._set_attr('in_dtype', dest_dtype)
if src_dtype == core.VarDesc.VarType.FP32 and dest_dtype == core.VarDesc.VarType.FP16:
for out_name in op.output_names:
if op.type == 'batch_norm' and out_name != 'Y':
if op.type in ['batch_norm', 'fused_bn_add_activation'
] and out_name != 'Y':
continue
for out_var_name in op.output(out_name):
out_var = block.var(out_var_name)

@ -0,0 +1,215 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
@unittest.skipIf(not core.is_compiled_with_cuda(),
"Paddle core is not compiled with CUDA")
class TestFusedBnAddActAPI(unittest.TestCase):
def setUp(self):
self.conv_param_attr1 = fluid.ParamAttr(
name='conv2d_1.weight',
initializer=fluid.initializer.Xavier(uniform=False),
learning_rate=0.001)
self.conv_param_attr2 = fluid.ParamAttr(
name='conv2d_2.weight',
initializer=fluid.initializer.Xavier(uniform=False),
learning_rate=0.001)
self.bn_param_attr1 = fluid.ParamAttr(
name='batch_norm_w_1',
initializer=fluid.initializer.Constant(value=1.0))
self.bn_bias_attr1 = fluid.ParamAttr(
name='batch_norm_b_1',
initializer=fluid.initializer.Constant(value=0.0))
self.bn_param_attr2 = fluid.ParamAttr(
name='batch_norm_w_2',
initializer=fluid.initializer.Constant(value=1.0))
self.bn_bias_attr2 = fluid.ParamAttr(
name='batch_norm_b_2',
initializer=fluid.initializer.Constant(value=0.0))
self.fc_param_attr = fluid.ParamAttr(
name='fc.weight',
initializer=fluid.initializer.Xavier(uniform=False))
def build_fused_program(self,
main_program,
startup_program,
use_cuda,
seed=1):
with fluid.program_guard(main_program, startup_program):
x = fluid.layers.data(name='x', shape=[1, 28, 28], dtype='float32')
y = fluid.layers.data(name="y", shape=[1], dtype='int64')
conv1_1 = fluid.layers.conv2d(
input=x,
filter_size=3,
num_filters=32,
stride=1,
padding=1,
act=None,
param_attr=self.conv_param_attr1,
bias_attr=False,
data_format='NHWC')
conv1_2 = fluid.layers.conv2d(
input=x,
filter_size=3,
num_filters=32,
stride=1,
padding=1,
act=None,
param_attr=self.conv_param_attr2,
bias_attr=False,
data_format='NHWC')
bn = fluid.layers.batch_norm(
input=conv1_1,
param_attr=self.bn_param_attr1,
bias_attr=self.bn_bias_attr1,
act=None,
data_layout='NHWC')
fused_bn_add_act = fluid.contrib.layers.fused_bn_add_act(
conv1_2,
bn,
param_attr=self.bn_param_attr2,
bias_attr=self.bn_bias_attr2)
prediction = fluid.layers.fc(input=fused_bn_add_act,
size=10,
act='softmax',
param_attr=self.fc_param_attr)
loss = fluid.layers.cross_entropy(input=prediction, label=y)
loss = fluid.layers.mean(loss)
sgd = fluid.optimizer.SGD(learning_rate=0.001)
sgd = fluid.contrib.mixed_precision.decorate(
sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0)
sgd.minimize(loss)
return x, y, loss
def build_origin_program(self,
main_program,
startup_program,
use_cuda,
seed=1):
with fluid.program_guard(main_program, startup_program):
x = fluid.layers.data(name='x', shape=[1, 28, 28], dtype='float32')
y = fluid.layers.data(name="y", shape=[1], dtype='int64')
conv1_1 = fluid.layers.conv2d(
input=x,
filter_size=3,
num_filters=32,
stride=1,
padding=1,
act=None,
param_attr=self.conv_param_attr1,
bias_attr=False,
data_format='NHWC')
conv1_2 = fluid.layers.conv2d(
input=x,
filter_size=3,
num_filters=32,
stride=1,
padding=1,
act=None,
param_attr=self.conv_param_attr2,
bias_attr=False,
data_format='NHWC')
bn1 = fluid.layers.batch_norm(
input=conv1_1,
param_attr=self.bn_param_attr1,
bias_attr=self.bn_bias_attr1,
act=None,
data_layout='NHWC')
bn2 = fluid.layers.batch_norm(
input=conv1_2,
param_attr=self.bn_param_attr2,
bias_attr=self.bn_bias_attr2,
act=None,
data_layout='NHWC')
out = bn1 + bn2
out = fluid.layers.relu(out)
prediction = fluid.layers.fc(input=out,
size=10,
act='softmax',
param_attr=self.fc_param_attr)
loss = fluid.layers.cross_entropy(input=prediction, label=y)
loss = fluid.layers.mean(loss)
sgd = fluid.optimizer.SGD(learning_rate=0.001)
sgd = fluid.contrib.mixed_precision.decorate(
sgd, use_dynamic_loss_scaling=True, init_loss_scaling=128.0)
sgd.minimize(loss)
return x, y, loss
def check(self, place, use_cuda):
paddle.manual_seed(1)
paddle.framework.random._manual_program_seed(1)
iters = 5
batch_size = 16
# build_fused_program
main_program = fluid.Program()
startup_program = fluid.Program()
x, y, loss = self.build_fused_program(main_program, startup_program,
use_cuda)
feeder = fluid.DataFeeder(feed_list=[x, y], place=place)
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=batch_size)
exe = fluid.Executor(place)
loss_vals_fused = []
scope = fluid.Scope()
with fluid.scope_guard(scope):
exe.run(startup_program)
for _ in range(iters):
data = next(train_reader())
loss_v = exe.run(main_program,
feed=feeder.feed(data),
fetch_list=[loss])
loss_vals_fused.append(loss_v[0][0])
# build_origin_program
main_program = fluid.Program()
startup_program = fluid.Program()
x, y, loss = self.build_origin_program(main_program, startup_program,
use_cuda)
feeder = fluid.DataFeeder(feed_list=[x, y], place=place)
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=batch_size)
loss_vals = []
scope = fluid.Scope()
with fluid.scope_guard(scope):
exe.run(startup_program)
for _ in range(iters):
data = next(train_reader())
loss_v = exe.run(main_program,
feed=feeder.feed(data),
fetch_list=[loss])
loss_vals.append(loss_v[0][0])
# check loss
for i in range(iters):
self.assertAlmostEqual(loss_vals[i], loss_vals_fused[i], delta=1e-5)
def test_fuse_bn_add_act(self):
place = fluid.CUDAPlace(0)
self.check(place, use_cuda=True)
if __name__ == '__main__':
unittest.main()
Loading…
Cancel
Save