parent
822f28343b
commit
90f664d0b0
@ -1,47 +0,0 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def maxout_forward_naive(input, groups):
|
||||
s0, s1, s2, s3 = input.shape
|
||||
return np.ndarray([s0, s1 / groups, groups, s2, s3], \
|
||||
buffer = input, dtype=input.dtype).max(axis=(2))
|
||||
|
||||
|
||||
class TestUnpool2dOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "unpool2d"
|
||||
self.init_test_case()
|
||||
input = np.random.random(self.shape).astype("float32")
|
||||
output = self.MaxOut_forward_naive(input, self.groups).astype("float32")
|
||||
|
||||
self.inputs = {'X': input}
|
||||
self.attrs = {
|
||||
'strides': self.strides,
|
||||
'paddings': self.paddings,
|
||||
'ksize': self.ksize,
|
||||
'unpooling_type': self.pool_type,
|
||||
}
|
||||
|
||||
self.outputs = {'Out': output.astype('float32')}
|
||||
|
||||
def init_pool_type(self):
|
||||
self.pool_type = "max"
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out')
|
||||
|
||||
def init_test_case(self):
|
||||
self.MaxOut_forward_naive = maxout_forward_naive
|
||||
self.shape = [100, 6, 2, 2]
|
||||
self.groups=2
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,74 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def unpool2dmax_forward_naive(input, indices, ksize, strides, paddings):
|
||||
s0, s1, s2, s3 = input.shape
|
||||
out_H=(s2 - 1) * strides[0] - 2 * paddings[0] + ksize[0]
|
||||
out_W=(s2 - 1) * strides[1] - 2 * paddings[1] + ksize[1]
|
||||
out = np.zeros((s0, s1, out_H, out_W))
|
||||
for nidx in xrange(s0):
|
||||
for cidx in xrange(s1):
|
||||
for h in xrange(s2):
|
||||
for w in xrange(s3):
|
||||
index = indices[nidx, cidx, h, w]
|
||||
hidx = (index - index % out_W) / out_W
|
||||
widx = index % out_W
|
||||
out[nidx, cidx, int(hidx), int(widx)] = input[nidx, cidx, h, w]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TestUnpoolOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "unpool"
|
||||
self.init_test_case()
|
||||
pre_input = np.random.random(self.shape).astype("float32")
|
||||
N, C, H, W = pre_input.shape
|
||||
H_out = (H - self.ksize[0] + 2 * self.paddings[0]) / self.strides[0] + 1
|
||||
W_out = (W - self.ksize[1] + 2 * self.paddings[1]) / self.strides[1] + 1
|
||||
input = np.zeros((N, C, H_out, W_out))
|
||||
indices = np.zeros((N, C, H_out, W_out))
|
||||
for i in xrange(H_out):
|
||||
for j in xrange(W_out):
|
||||
r_start = np.max((i * self.strides[0] - self.paddings[0], 0))
|
||||
r_end = np.min((i * self.strides[0] + self.ksize[0] - self.paddings[0], H))
|
||||
c_start = np.max((j * self.strides[1] - self.paddings[1], 0))
|
||||
c_end = np.min((j * self.strides[1] + self.ksize[1] - self.paddings[1], W))
|
||||
for nidx in xrange(N):
|
||||
for cidx in xrange(C):
|
||||
x_masked = pre_input[nidx, cidx, r_start:r_end, c_start:c_end]
|
||||
input[nidx, cidx, i, j] = x_masked.max()
|
||||
arg = x_masked.argmax()
|
||||
indices[nidx, cidx, i, j] = (r_start + arg / self.ksize[1]) * W + c_start + arg % self.ksize[1]
|
||||
output = self.Unpool2d_forward_naive(input, indices, self.ksize, self.strides, self.paddings).astype("float32")
|
||||
self.inputs = {'X': input.astype('float32'),
|
||||
'Y': indices.astype('int16')}
|
||||
self.attrs = {
|
||||
'strides': self.strides,
|
||||
'paddings': self.paddings,
|
||||
'ksize': self.ksize,
|
||||
'unpoolingtype': self.unpoolingtype,
|
||||
}
|
||||
self.outputs = {'Out': output.astype('float32')}
|
||||
|
||||
def test_check_output(self):
|
||||
print self.outputs['Out']
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(['X'], 'Out', max_relative_error=0.5)
|
||||
|
||||
def init_test_case(self):
|
||||
self.Unpool2d_forward_naive = unpool2dmax_forward_naive
|
||||
self.unpoolingtype = "max"
|
||||
self.shape = [10, 2, 5, 5]
|
||||
self.ksize = [3, 3]
|
||||
self.strides = [2, 2]
|
||||
self.paddings = [0, 0]
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue