parent
1670db5e86
commit
9322216170
@ -0,0 +1,66 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import os
|
||||
|
||||
__all__ = ["distributed_sampler"]
|
||||
|
||||
|
||||
def distributed_sampler(reader, batch_size):
|
||||
"""
|
||||
Create a distributed reader.
|
||||
|
||||
:param reader: the data reader to read from.
|
||||
:type reader: callable
|
||||
:param batch_size: the size of the batch
|
||||
:type batch_size: int
|
||||
"""
|
||||
|
||||
def batch_reader():
|
||||
if not os.getenv('PADDLE_TRAINER_ID'):
|
||||
raise RuntimeError(
|
||||
"The current program is not in distributed mode.")
|
||||
|
||||
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
|
||||
trainer_count = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
|
||||
|
||||
def _slice_data(size):
|
||||
per_node_lines = size // trainer_count
|
||||
return [
|
||||
trainer_id * per_node_lines, (trainer_id + 1) * per_node_lines
|
||||
]
|
||||
|
||||
r = reader()
|
||||
b = []
|
||||
|
||||
for instance in r:
|
||||
b.append(instance)
|
||||
if len(b) == batch_size:
|
||||
if len(b) >= trainer_count:
|
||||
begin, end = _slice_data(len(b))
|
||||
yield b[begin:end]
|
||||
b = []
|
||||
|
||||
if len(b) >= trainer_count:
|
||||
begin, end = _slice_data(len(b))
|
||||
yield b[begin:end]
|
||||
|
||||
# Batch size check
|
||||
batch_size = int(batch_size)
|
||||
if batch_size <= 0:
|
||||
raise ValueError("batch_size should be a positive integeral value, "
|
||||
"but got batch_size={}".format(batch_size))
|
||||
|
||||
return batch_reader
|
@ -0,0 +1,49 @@
|
||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle.fluid as fluid
|
||||
import os
|
||||
|
||||
|
||||
def data_generator(input_shape=(1, 32, 32), label_range=9):
|
||||
while True:
|
||||
img = np.random.random(size=input_shape).astype(np.float32)
|
||||
label = np.array(np.random.randint(0, label_range)).astype("int64")
|
||||
yield img, label
|
||||
|
||||
|
||||
class TestDistributedReader(unittest.TestCase):
|
||||
def test_distributed_reader(self):
|
||||
batch_size = 32
|
||||
trainer_num = 4
|
||||
os.environ['PADDLE_TRAINER_ID'] = str(0)
|
||||
os.environ['PADDLE_TRAINERS_NUM'] = str(trainer_num)
|
||||
|
||||
reader = fluid.contrib.reader.distributed_sampler(
|
||||
data_generator, batch_size=batch_size)
|
||||
data = next(reader())
|
||||
assert len(data) == batch_size // trainer_num,\
|
||||
"sub batch size should be {}, but the returned size is {}".format(
|
||||
batch_size // trainer_num, len(data))
|
||||
|
||||
os.unsetenv('PADDLE_TRAINER_ID')
|
||||
os.unsetenv('PADDLE_TRAINERS_NUM')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue