parent
0519cc6423
commit
93dc44c9df
@ -0,0 +1,176 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "image"
|
||||
type: "data"
|
||||
size: 65536
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__conv_0__"
|
||||
type: "exconv"
|
||||
size: 3297856
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "image"
|
||||
input_parameter_name: "___conv_0__.w0"
|
||||
conv_conf {
|
||||
filter_size: 32
|
||||
channels: 1
|
||||
stride: 1
|
||||
padding: 1
|
||||
groups: 1
|
||||
filter_channels: 1
|
||||
output_x: 227
|
||||
img_size: 256
|
||||
caffe_mode: true
|
||||
filter_size_y: 32
|
||||
padding_y: 1
|
||||
stride_y: 1
|
||||
}
|
||||
}
|
||||
bias_parameter_name: "___conv_0__.wbias"
|
||||
num_filters: 64
|
||||
shared_biases: true
|
||||
}
|
||||
layers {
|
||||
name: "__batch_norm_0__"
|
||||
type: "batch_norm"
|
||||
size: 3297856
|
||||
active_type: "relu"
|
||||
inputs {
|
||||
input_layer_name: "__conv_0__"
|
||||
input_parameter_name: "___batch_norm_0__.w0"
|
||||
image_conf {
|
||||
channels: 64
|
||||
img_size: 227
|
||||
}
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "__conv_0__"
|
||||
input_parameter_name: "___batch_norm_0__.w1"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "__conv_0__"
|
||||
input_parameter_name: "___batch_norm_0__.w2"
|
||||
}
|
||||
bias_parameter_name: "___batch_norm_0__.wbias"
|
||||
moving_average_fraction: 0.899999976158
|
||||
}
|
||||
layers {
|
||||
name: "__crmnorm_0__"
|
||||
type: "norm"
|
||||
size: 3297856
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__batch_norm_0__"
|
||||
norm_conf {
|
||||
norm_type: "cmrnorm-projection"
|
||||
channels: 64
|
||||
size: 32
|
||||
scale: 0.000399999989895
|
||||
pow: 0.75
|
||||
output_x: 227
|
||||
img_size: 227
|
||||
blocked: false
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__pool_0__"
|
||||
type: "pool"
|
||||
size: 2458624
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__conv_0__"
|
||||
pool_conf {
|
||||
pool_type: "max-projection"
|
||||
channels: 64
|
||||
size_x: 32
|
||||
stride: 1
|
||||
output_x: 196
|
||||
img_size: 227
|
||||
padding: 0
|
||||
size_y: 32
|
||||
stride_y: 1
|
||||
output_y: 196
|
||||
img_size_y: 227
|
||||
padding_y: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
parameters {
|
||||
name: "___conv_0__.w0"
|
||||
size: 65536
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0441941730678
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___conv_0__.wbias"
|
||||
size: 64
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 64
|
||||
dims: 1
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___batch_norm_0__.w0"
|
||||
size: 64
|
||||
initial_mean: 1.0
|
||||
initial_std: 0.0
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___batch_norm_0__.w1"
|
||||
size: 64
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 64
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
is_static: true
|
||||
is_shared: true
|
||||
}
|
||||
parameters {
|
||||
name: "___batch_norm_0__.w2"
|
||||
size: 64
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 64
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
is_static: true
|
||||
is_shared: true
|
||||
}
|
||||
parameters {
|
||||
name: "___batch_norm_0__.wbias"
|
||||
size: 64
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 64
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "image"
|
||||
output_layer_names: "__pool_0__"
|
||||
output_layer_names: "__crmnorm_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "image"
|
||||
layer_names: "__conv_0__"
|
||||
layer_names: "__batch_norm_0__"
|
||||
layer_names: "__crmnorm_0__"
|
||||
layer_names: "__pool_0__"
|
||||
input_layer_names: "image"
|
||||
output_layer_names: "__pool_0__"
|
||||
output_layer_names: "__crmnorm_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,69 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 30
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__first_seq_0__"
|
||||
type: "seqlastins"
|
||||
size: 30
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
select_first: true
|
||||
trans_type: "seq"
|
||||
}
|
||||
layers {
|
||||
name: "__first_seq_1__"
|
||||
type: "seqlastins"
|
||||
size: 30
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
select_first: true
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
layers {
|
||||
name: "__last_seq_0__"
|
||||
type: "seqlastins"
|
||||
size: 30
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
trans_type: "seq"
|
||||
}
|
||||
layers {
|
||||
name: "__last_seq_1__"
|
||||
type: "seqlastins"
|
||||
size: 30
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__first_seq_0__"
|
||||
output_layer_names: "__first_seq_1__"
|
||||
output_layer_names: "__last_seq_0__"
|
||||
output_layer_names: "__last_seq_1__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "__first_seq_0__"
|
||||
layer_names: "__first_seq_1__"
|
||||
layer_names: "__last_seq_0__"
|
||||
layer_names: "__last_seq_1__"
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__first_seq_0__"
|
||||
output_layer_names: "__first_seq_1__"
|
||||
output_layer_names: "__last_seq_0__"
|
||||
output_layer_names: "__last_seq_1__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,125 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 2304
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__conv_0__"
|
||||
type: "exconv"
|
||||
size: 36864
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___conv_0__.w0"
|
||||
conv_conf {
|
||||
filter_size: 3
|
||||
channels: 1
|
||||
stride: 1
|
||||
padding: 1
|
||||
groups: 1
|
||||
filter_channels: 1
|
||||
output_x: 48
|
||||
img_size: 48
|
||||
caffe_mode: true
|
||||
filter_size_y: 3
|
||||
padding_y: 1
|
||||
stride_y: 1
|
||||
}
|
||||
}
|
||||
bias_parameter_name: "___conv_0__.wbias"
|
||||
num_filters: 16
|
||||
shared_biases: true
|
||||
}
|
||||
layers {
|
||||
name: "__bilinear_interp_layer_0__"
|
||||
type: "bilinear_interp"
|
||||
size: 36864
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__conv_0__"
|
||||
bilinear_interp_conf {
|
||||
img_size_x: 32
|
||||
img_size_y: 32
|
||||
out_size_x: 64
|
||||
out_size_y: 64
|
||||
num_channels: 16
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__pool_0__"
|
||||
type: "pool"
|
||||
size: 9216
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__bilinear_interp_layer_0__"
|
||||
pool_conf {
|
||||
pool_type: "max-projection"
|
||||
channels: 4
|
||||
size_x: 2
|
||||
stride: 2
|
||||
output_x: 48
|
||||
img_size: 96
|
||||
padding: 0
|
||||
size_y: 2
|
||||
stride_y: 2
|
||||
output_y: 48
|
||||
img_size_y: 96
|
||||
padding_y: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__fc_layer_0__"
|
||||
type: "fc"
|
||||
size: 384
|
||||
active_type: "tanh"
|
||||
inputs {
|
||||
input_layer_name: "__pool_0__"
|
||||
input_parameter_name: "___fc_layer_0__.w0"
|
||||
}
|
||||
}
|
||||
parameters {
|
||||
name: "___conv_0__.w0"
|
||||
size: 144
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.471404522657
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___conv_0__.wbias"
|
||||
size: 16
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 16
|
||||
dims: 1
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
parameters {
|
||||
name: "___fc_layer_0__.w0"
|
||||
size: 3538944
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0104166669771
|
||||
dims: 9216
|
||||
dims: 384
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__fc_layer_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "__conv_0__"
|
||||
layer_names: "__bilinear_interp_layer_0__"
|
||||
layer_names: "__pool_0__"
|
||||
layer_names: "__fc_layer_0__"
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__fc_layer_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,111 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "input"
|
||||
type: "data"
|
||||
size: 300
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "label"
|
||||
type: "data"
|
||||
size: 1
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "weight"
|
||||
type: "data"
|
||||
size: 1
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__fc_layer_0__"
|
||||
type: "fc"
|
||||
size: 10
|
||||
active_type: "softmax"
|
||||
inputs {
|
||||
input_layer_name: "input"
|
||||
input_parameter_name: "___fc_layer_0__.w0"
|
||||
}
|
||||
bias_parameter_name: "___fc_layer_0__.wbias"
|
||||
}
|
||||
layers {
|
||||
name: "__cost_0__"
|
||||
type: "multi-class-cross-entropy"
|
||||
size: 1
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__fc_layer_0__"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "label"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "weight"
|
||||
}
|
||||
coeff: 1.0
|
||||
}
|
||||
layers {
|
||||
name: "__regression_cost_0__"
|
||||
type: "square_error"
|
||||
size: 1
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "__fc_layer_0__"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "label"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "weight"
|
||||
}
|
||||
coeff: 1.0
|
||||
}
|
||||
parameters {
|
||||
name: "___fc_layer_0__.w0"
|
||||
size: 3000
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0577350258827
|
||||
dims: 300
|
||||
dims: 10
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___fc_layer_0__.wbias"
|
||||
size: 10
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 10
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "input"
|
||||
input_layer_names: "label"
|
||||
input_layer_names: "weight"
|
||||
output_layer_names: "__cost_0__"
|
||||
output_layer_names: "__regression_cost_0__"
|
||||
evaluators {
|
||||
name: "classification_error_evaluator"
|
||||
type: "classification_error"
|
||||
input_layers: "__fc_layer_0__"
|
||||
input_layers: "label"
|
||||
input_layers: "weight"
|
||||
}
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "input"
|
||||
layer_names: "label"
|
||||
layer_names: "weight"
|
||||
layer_names: "__fc_layer_0__"
|
||||
layer_names: "__cost_0__"
|
||||
layer_names: "__regression_cost_0__"
|
||||
input_layer_names: "input"
|
||||
input_layer_names: "label"
|
||||
input_layer_names: "weight"
|
||||
output_layer_names: "__cost_0__"
|
||||
output_layer_names: "__regression_cost_0__"
|
||||
evaluator_names: "classification_error_evaluator"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,56 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 30
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "data_seq"
|
||||
type: "data"
|
||||
size: 30
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__expand_layer_0__"
|
||||
type: "expand"
|
||||
size: 30
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "data_seq"
|
||||
}
|
||||
trans_type: "seq"
|
||||
}
|
||||
layers {
|
||||
name: "__expand_layer_1__"
|
||||
type: "expand"
|
||||
size: 30
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "data_seq"
|
||||
}
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "data_seq"
|
||||
output_layer_names: "__expand_layer_0__"
|
||||
output_layer_names: "__expand_layer_1__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "data_seq"
|
||||
layer_names: "__expand_layer_0__"
|
||||
layer_names: "__expand_layer_1__"
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "data_seq"
|
||||
output_layer_names: "__expand_layer_0__"
|
||||
output_layer_names: "__expand_layer_1__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,98 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__trans_layer_0__"
|
||||
type: "trans"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__fc_layer_0__"
|
||||
type: "fc"
|
||||
size: 100
|
||||
active_type: "tanh"
|
||||
inputs {
|
||||
input_layer_name: "__trans_layer_0__"
|
||||
input_parameter_name: "___fc_layer_0__.w0"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "mask"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__selective_fc_layer_0__"
|
||||
type: "selective_fc"
|
||||
size: 100
|
||||
active_type: "sigmoid"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___selective_fc_layer_0__.w0"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "mask"
|
||||
}
|
||||
bias_parameter_name: "___selective_fc_layer_0__.wbias"
|
||||
selective_fc_pass_generation: false
|
||||
has_selected_colums: true
|
||||
selective_fc_full_mul_ratio: 0.019999999553
|
||||
}
|
||||
parameters {
|
||||
name: "___fc_layer_0__.w0"
|
||||
size: 10000
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.10000000149
|
||||
dims: 100
|
||||
dims: 100
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___selective_fc_layer_0__.w0"
|
||||
size: 10000
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.10000000149
|
||||
dims: 100
|
||||
dims: 100
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
is_sparse: false
|
||||
}
|
||||
parameters {
|
||||
name: "___selective_fc_layer_0__.wbias"
|
||||
size: 100
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 100
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "mask"
|
||||
output_layer_names: "__fc_layer_0__"
|
||||
output_layer_names: "__selective_fc_layer_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "__trans_layer_0__"
|
||||
layer_names: "__fc_layer_0__"
|
||||
layer_names: "mask"
|
||||
layer_names: "__selective_fc_layer_0__"
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "mask"
|
||||
output_layer_names: "__fc_layer_0__"
|
||||
output_layer_names: "__selective_fc_layer_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,51 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 120
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__gru_0__"
|
||||
type: "gated_recurrent"
|
||||
size: 40
|
||||
active_type: "sigmoid"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___gru_0__.w0"
|
||||
}
|
||||
bias_parameter_name: "___gru_0__.wbias"
|
||||
reversed: true
|
||||
active_gate_type: "tanh"
|
||||
}
|
||||
parameters {
|
||||
name: "___gru_0__.w0"
|
||||
size: 4800
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.158113881946
|
||||
dims: 40
|
||||
dims: 120
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___gru_0__.wbias"
|
||||
size: 120
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 120
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__gru_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "__gru_0__"
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__gru_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,62 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "label"
|
||||
type: "data"
|
||||
size: 10
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__hsigmoid_0__"
|
||||
type: "hsigmoid"
|
||||
size: 1
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___hsigmoid_0__.w0"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "label"
|
||||
}
|
||||
bias_parameter_name: "___hsigmoid_0__.wbias"
|
||||
num_classes: 10
|
||||
}
|
||||
parameters {
|
||||
name: "___hsigmoid_0__.w0"
|
||||
size: 900
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.333333343267
|
||||
dims: 9
|
||||
dims: 100
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___hsigmoid_0__.wbias"
|
||||
size: 9
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 9
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "label"
|
||||
output_layer_names: "__hsigmoid_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "label"
|
||||
layer_names: "__hsigmoid_0__"
|
||||
input_layer_names: "data"
|
||||
input_layer_names: "label"
|
||||
output_layer_names: "__hsigmoid_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,53 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "data"
|
||||
type: "data"
|
||||
size: 128
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__lstmemory_0__"
|
||||
type: "lstmemory"
|
||||
size: 32
|
||||
active_type: "tanh"
|
||||
inputs {
|
||||
input_layer_name: "data"
|
||||
input_parameter_name: "___lstmemory_0__.w0"
|
||||
}
|
||||
bias_parameter_name: "___lstmemory_0__.wbias"
|
||||
reversed: true
|
||||
active_gate_type: "tanh"
|
||||
active_state_type: "tanh"
|
||||
}
|
||||
parameters {
|
||||
name: "___lstmemory_0__.w0"
|
||||
size: 4096
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.176776692271
|
||||
dims: 32
|
||||
dims: 32
|
||||
dims: 4
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___lstmemory_0__.wbias"
|
||||
size: 224
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 224
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__lstmemory_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "data"
|
||||
layer_names: "__lstmemory_0__"
|
||||
input_layer_names: "data"
|
||||
output_layer_names: "__lstmemory_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,225 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "w"
|
||||
type: "data"
|
||||
size: 1
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "a"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "b"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "c"
|
||||
type: "data"
|
||||
size: 200
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "d"
|
||||
type: "data"
|
||||
size: 31
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__interpolation_layer_0__"
|
||||
type: "interpolation"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "w"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__power_layer_0__"
|
||||
type: "power"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "w"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__scaling_layer_0__"
|
||||
type: "scaling"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "w"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__cos_sim_0__"
|
||||
type: "cos"
|
||||
size: 1
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
}
|
||||
cos_scale: 5.0
|
||||
}
|
||||
layers {
|
||||
name: "__cos_sim_1__"
|
||||
type: "cos_vm"
|
||||
size: 2
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "c"
|
||||
}
|
||||
cos_scale: 5.0
|
||||
}
|
||||
layers {
|
||||
name: "__sum_to_one_norm_layer_0__"
|
||||
type: "sum_to_one_norm"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__conv_shift_layer_0__"
|
||||
type: "conv_shift"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "d"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__tensor_layer_0__"
|
||||
type: "tensor"
|
||||
size: 1000
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
input_parameter_name: "___tensor_layer_0__.w0"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
}
|
||||
bias_parameter_name: "___tensor_layer_0__.wbias"
|
||||
}
|
||||
layers {
|
||||
name: "__slope_intercept_layer_0__"
|
||||
type: "slope_intercept"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
slope: 0.699999988079
|
||||
intercept: 0.899999976158
|
||||
}
|
||||
layers {
|
||||
name: "__linear_comb_layer_0__"
|
||||
type: "convex_comb"
|
||||
size: 2
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "c"
|
||||
}
|
||||
}
|
||||
parameters {
|
||||
name: "___tensor_layer_0__.w0"
|
||||
size: 10000000
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.10000000149
|
||||
dims: 100
|
||||
dims: 100
|
||||
dims: 1000
|
||||
initial_strategy: 0
|
||||
initial_smart: true
|
||||
}
|
||||
parameters {
|
||||
name: "___tensor_layer_0__.wbias"
|
||||
size: 1000
|
||||
initial_mean: 0.0
|
||||
initial_std: 0.0
|
||||
dims: 1
|
||||
dims: 1000
|
||||
initial_strategy: 0
|
||||
initial_smart: false
|
||||
}
|
||||
input_layer_names: "w"
|
||||
input_layer_names: "a"
|
||||
input_layer_names: "b"
|
||||
input_layer_names: "c"
|
||||
input_layer_names: "d"
|
||||
output_layer_names: "__interpolation_layer_0__"
|
||||
output_layer_names: "__power_layer_0__"
|
||||
output_layer_names: "__scaling_layer_0__"
|
||||
output_layer_names: "__cos_sim_0__"
|
||||
output_layer_names: "__cos_sim_1__"
|
||||
output_layer_names: "__sum_to_one_norm_layer_0__"
|
||||
output_layer_names: "__conv_shift_layer_0__"
|
||||
output_layer_names: "__tensor_layer_0__"
|
||||
output_layer_names: "__slope_intercept_layer_0__"
|
||||
output_layer_names: "__linear_comb_layer_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "w"
|
||||
layer_names: "a"
|
||||
layer_names: "b"
|
||||
layer_names: "c"
|
||||
layer_names: "d"
|
||||
layer_names: "__interpolation_layer_0__"
|
||||
layer_names: "__power_layer_0__"
|
||||
layer_names: "__scaling_layer_0__"
|
||||
layer_names: "__cos_sim_0__"
|
||||
layer_names: "__cos_sim_1__"
|
||||
layer_names: "__sum_to_one_norm_layer_0__"
|
||||
layer_names: "__conv_shift_layer_0__"
|
||||
layer_names: "__tensor_layer_0__"
|
||||
layer_names: "__slope_intercept_layer_0__"
|
||||
layer_names: "__linear_comb_layer_0__"
|
||||
input_layer_names: "w"
|
||||
input_layer_names: "a"
|
||||
input_layer_names: "b"
|
||||
input_layer_names: "c"
|
||||
input_layer_names: "d"
|
||||
output_layer_names: "__interpolation_layer_0__"
|
||||
output_layer_names: "__power_layer_0__"
|
||||
output_layer_names: "__scaling_layer_0__"
|
||||
output_layer_names: "__cos_sim_0__"
|
||||
output_layer_names: "__cos_sim_1__"
|
||||
output_layer_names: "__sum_to_one_norm_layer_0__"
|
||||
output_layer_names: "__conv_shift_layer_0__"
|
||||
output_layer_names: "__tensor_layer_0__"
|
||||
output_layer_names: "__slope_intercept_layer_0__"
|
||||
output_layer_names: "__linear_comb_layer_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,26 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "input"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__print_0__"
|
||||
type: "print"
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "input"
|
||||
}
|
||||
}
|
||||
input_layer_names: "input"
|
||||
output_layer_names: "input"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "input"
|
||||
layer_names: "__print_0__"
|
||||
input_layer_names: "input"
|
||||
output_layer_names: "input"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,111 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "dat_in"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_0__"
|
||||
type: "max"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
trans_type: "seq"
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_1__"
|
||||
type: "max"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_2__"
|
||||
type: "average"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
average_strategy: "average"
|
||||
trans_type: "seq"
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_3__"
|
||||
type: "average"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
average_strategy: "average"
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_4__"
|
||||
type: "average"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
average_strategy: "sum"
|
||||
trans_type: "seq"
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_5__"
|
||||
type: "average"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
average_strategy: "sum"
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
layers {
|
||||
name: "__seq_pooling_6__"
|
||||
type: "max"
|
||||
size: 100
|
||||
active_type: "linear"
|
||||
inputs {
|
||||
input_layer_name: "dat_in"
|
||||
}
|
||||
output_max_index: true
|
||||
trans_type: "non-seq"
|
||||
}
|
||||
input_layer_names: "dat_in"
|
||||
output_layer_names: "__seq_pooling_0__"
|
||||
output_layer_names: "__seq_pooling_1__"
|
||||
output_layer_names: "__seq_pooling_2__"
|
||||
output_layer_names: "__seq_pooling_3__"
|
||||
output_layer_names: "__seq_pooling_4__"
|
||||
output_layer_names: "__seq_pooling_5__"
|
||||
output_layer_names: "__seq_pooling_6__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "dat_in"
|
||||
layer_names: "__seq_pooling_0__"
|
||||
layer_names: "__seq_pooling_1__"
|
||||
layer_names: "__seq_pooling_2__"
|
||||
layer_names: "__seq_pooling_3__"
|
||||
layer_names: "__seq_pooling_4__"
|
||||
layer_names: "__seq_pooling_5__"
|
||||
layer_names: "__seq_pooling_6__"
|
||||
input_layer_names: "dat_in"
|
||||
output_layer_names: "__seq_pooling_0__"
|
||||
output_layer_names: "__seq_pooling_1__"
|
||||
output_layer_names: "__seq_pooling_2__"
|
||||
output_layer_names: "__seq_pooling_3__"
|
||||
output_layer_names: "__seq_pooling_4__"
|
||||
output_layer_names: "__seq_pooling_5__"
|
||||
output_layer_names: "__seq_pooling_6__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,27 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "probs"
|
||||
type: "data"
|
||||
size: 100
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__sampling_id_layer_0__"
|
||||
type: "sampling_id"
|
||||
size: 100
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "probs"
|
||||
}
|
||||
}
|
||||
input_layer_names: "probs"
|
||||
output_layer_names: "__sampling_id_layer_0__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "probs"
|
||||
layer_names: "__sampling_id_layer_0__"
|
||||
input_layer_names: "probs"
|
||||
output_layer_names: "__sampling_id_layer_0__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
@ -0,0 +1,81 @@
|
||||
type: "nn"
|
||||
layers {
|
||||
name: "a"
|
||||
type: "data"
|
||||
size: 10
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "b"
|
||||
type: "data"
|
||||
size: 10
|
||||
active_type: ""
|
||||
}
|
||||
layers {
|
||||
name: "__addto_0__"
|
||||
type: "addto"
|
||||
size: 10
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__concat_0__"
|
||||
type: "concat"
|
||||
size: 20
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
}
|
||||
}
|
||||
layers {
|
||||
name: "__concat_1__"
|
||||
type: "concat2"
|
||||
size: 20
|
||||
active_type: ""
|
||||
inputs {
|
||||
input_layer_name: "a"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___concat_1__.w0"
|
||||
input_size: 10
|
||||
output_size: 10
|
||||
}
|
||||
}
|
||||
inputs {
|
||||
input_layer_name: "b"
|
||||
proj_conf {
|
||||
type: "identity"
|
||||
name: "___concat_1__.w1"
|
||||
input_size: 10
|
||||
output_size: 10
|
||||
}
|
||||
}
|
||||
}
|
||||
input_layer_names: "a"
|
||||
input_layer_names: "b"
|
||||
output_layer_names: "__addto_0__"
|
||||
output_layer_names: "__concat_0__"
|
||||
output_layer_names: "__concat_1__"
|
||||
sub_models {
|
||||
name: "root"
|
||||
layer_names: "a"
|
||||
layer_names: "b"
|
||||
layer_names: "__addto_0__"
|
||||
layer_names: "__concat_0__"
|
||||
layer_names: "__concat_1__"
|
||||
input_layer_names: "a"
|
||||
input_layer_names: "b"
|
||||
output_layer_names: "__addto_0__"
|
||||
output_layer_names: "__concat_0__"
|
||||
output_layer_names: "__concat_1__"
|
||||
is_recurrent_layer_group: false
|
||||
}
|
||||
|
Loading…
Reference in new issue