Merge pull request #14836 from sneaxiy/feature/py_func
Featue/py_func oprevert-15207-remove_op_handle_lock_and_fix_var
commit
95cbe07c40
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,25 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "pybind11/pybind11.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
size_t AppendPythonCallableObjectAndReturnId(const ::pybind11::object &py_obj);
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,183 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import os
|
||||
import paddle.fluid as fluid
|
||||
import paddle
|
||||
import unittest
|
||||
import six
|
||||
import numpy as np
|
||||
|
||||
dev_cnt = 2
|
||||
if fluid.core.is_compiled_with_cuda():
|
||||
dev_cnt = fluid.core.get_cuda_device_count()
|
||||
os.environ['CPU_NUM'] = str(dev_cnt)
|
||||
|
||||
|
||||
def dummy_func_with_no_input():
|
||||
return float(1.0)
|
||||
|
||||
|
||||
def dummy_func_with_no_output(x):
|
||||
pass
|
||||
|
||||
|
||||
def tanh(x):
|
||||
return np.tanh(x)
|
||||
|
||||
|
||||
def tanh_grad(y, dy):
|
||||
return np.array(dy) * (1 - np.square(np.array(y)))
|
||||
|
||||
|
||||
def cross_entropy(logits, labels):
|
||||
logits = np.array(logits)
|
||||
labels = np.array(labels)
|
||||
M = logits.shape[0]
|
||||
N = logits.shape[1]
|
||||
ret = np.ndarray([M, 1]).astype(logits.dtype)
|
||||
for idx in six.moves.range(M):
|
||||
ret[idx][0] = -np.log(logits[idx][labels[idx][0]])
|
||||
return ret
|
||||
|
||||
|
||||
def cross_entropy_grad(logits, labels, bwd_dout):
|
||||
logits = np.array(logits)
|
||||
labels = np.array(labels)
|
||||
bwd_dout = np.array(bwd_dout)
|
||||
M = logits.shape[0]
|
||||
N = logits.shape[1]
|
||||
dlogits = np.zeros([M, N]).astype(logits.dtype)
|
||||
for idx in six.moves.range(M):
|
||||
dlogits[idx][labels[idx][0]] = -bwd_dout[idx] / logits[idx][labels[idx][
|
||||
0]]
|
||||
return dlogits, None
|
||||
|
||||
|
||||
def simple_fc_net(img, label, use_py_func_op):
|
||||
hidden = img
|
||||
for idx in range(4):
|
||||
hidden = fluid.layers.fc(
|
||||
hidden,
|
||||
size=200,
|
||||
bias_attr=fluid.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=1.0)))
|
||||
if not use_py_func_op:
|
||||
hidden = fluid.layers.tanh(hidden)
|
||||
else:
|
||||
new_hidden = fluid.default_main_program().current_block(
|
||||
).create_var(
|
||||
name='hidden_{}'.format(idx),
|
||||
dtype='float32',
|
||||
shape=hidden.shape)
|
||||
hidden = fluid.layers.py_func(
|
||||
func=tanh,
|
||||
x=hidden,
|
||||
out=new_hidden,
|
||||
backward_func=tanh_grad,
|
||||
skip_vars_in_backward_input=hidden)
|
||||
|
||||
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
|
||||
if not use_py_func_op:
|
||||
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
else:
|
||||
loss = fluid.default_main_program().current_block().create_var(
|
||||
name='loss', dtype='float32', shape=[-1, 1])
|
||||
loss = fluid.layers.py_func(
|
||||
func=cross_entropy,
|
||||
x=[prediction, label],
|
||||
out=loss,
|
||||
backward_func=cross_entropy_grad,
|
||||
skip_vars_in_backward_input=loss)
|
||||
|
||||
dummy_var = fluid.default_main_program().current_block().create_var(
|
||||
name='test_tmp_var', dtype='float32', shape=[1])
|
||||
fluid.layers.py_func(
|
||||
func=dummy_func_with_no_input, x=None, out=dummy_var)
|
||||
|
||||
fluid.layers.py_func(func=dummy_func_with_no_output, x=loss, out=None)
|
||||
|
||||
loss = fluid.layers.mean(loss)
|
||||
return loss
|
||||
|
||||
|
||||
def reader():
|
||||
for _ in six.moves.range(dev_cnt * 100):
|
||||
yield np.random.random([784]), np.random.random_integers(
|
||||
size=[1], low=0, high=9)
|
||||
|
||||
|
||||
def test_main(use_cuda, use_py_func_op, use_parallel_executor):
|
||||
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
||||
return None
|
||||
|
||||
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
||||
with fluid.scope_guard(fluid.core.Scope()):
|
||||
fluid.default_main_program().random_seed = 1
|
||||
fluid.default_startup_program().random_seed = 1
|
||||
np.random.seed(1)
|
||||
|
||||
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
|
||||
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||
loss = simple_fc_net(img, label, use_py_func_op)
|
||||
optimizer = fluid.optimizer.SGD(learning_rate=1e-3)
|
||||
optimizer.minimize(loss)
|
||||
|
||||
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||
feeder = fluid.DataFeeder(feed_list=[img, label], place=place)
|
||||
r = paddle.batch(reader, batch_size=10)
|
||||
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(fluid.default_startup_program())
|
||||
if use_parallel_executor:
|
||||
exe = fluid.ParallelExecutor(
|
||||
use_cuda=use_cuda, loss_name=loss.name)
|
||||
fetch_list = [loss.name]
|
||||
else:
|
||||
fetch_list = [loss]
|
||||
|
||||
ret = []
|
||||
for epoch_id in six.moves.range(2):
|
||||
for d in r():
|
||||
L, = exe.run(feed=feeder.feed(d), fetch_list=fetch_list)
|
||||
ret.append(L)
|
||||
|
||||
return np.array(ret)
|
||||
|
||||
|
||||
class TestPyFuncOpUseExecutor(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.use_parallel_executor = False
|
||||
|
||||
def test_loss_diff(self):
|
||||
losses = []
|
||||
for use_cuda in [True, False]:
|
||||
for use_py_func_op in [True, False]:
|
||||
L = test_main(use_cuda, use_py_func_op,
|
||||
self.use_parallel_executor)
|
||||
if L is not None:
|
||||
losses.append(L)
|
||||
|
||||
for idx in six.moves.range(len(losses) - 1):
|
||||
max_diff = np.max(np.abs(losses[idx] - losses[0]))
|
||||
self.assertAlmostEqual(max_diff, 0, delta=1e-3)
|
||||
|
||||
|
||||
class TestPyFuncOpUseParallelExecutor(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.use_parallel_executor = True
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue