Softmax vectorization (#29404)
* vec softmax fw * vec softmax bw * add a message argument for compiler compatibilityrevert-31562-mean
parent
a136c9cdb8
commit
95e334810a
@ -0,0 +1,247 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/operators/math/math_cuda_utils.h"
|
||||
#include "paddle/fluid/operators/softmax_op.h"
|
||||
#include "paddle/fluid/platform/cudnn_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace platform {
|
||||
struct CUDAPlace;
|
||||
struct float16;
|
||||
} // namespace platform
|
||||
} // namespace paddle
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
|
||||
using DataLayout = platform::DataLayout;
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
static inline int SizeOutAxis(const int axis, DDim dims) {
|
||||
int size = 1;
|
||||
for (int i = axis + 1; i < dims.size(); i++) {
|
||||
size *= dims[i];
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
template <typename T, int VLEN>
|
||||
union vec_t {
|
||||
static_assert(sizeof(T) == -1, "vec_t is only available by specialization.");
|
||||
};
|
||||
|
||||
template <>
|
||||
union vec_t<float, 4> {
|
||||
float4 s;
|
||||
float v[4];
|
||||
};
|
||||
|
||||
template <>
|
||||
union vec_t<platform::float16, 4> {
|
||||
int2 s;
|
||||
platform::float16 v[4];
|
||||
};
|
||||
|
||||
template <typename T, typename VECT, int VPT, int WARP_PER_BLOCK>
|
||||
__global__ void VecSoftmaxForward(T* dst, const T* src, const int batch_size,
|
||||
const int softmax_ele) {
|
||||
int offset = blockIdx.x * softmax_ele * WARP_PER_BLOCK;
|
||||
int idx = threadIdx.x * VPT;
|
||||
|
||||
VECT buf = reinterpret_cast<const VECT*>(&src[offset + idx])[0];
|
||||
T* bufp = reinterpret_cast<T*>(&buf);
|
||||
float4 val4;
|
||||
float* val4p = reinterpret_cast<float*>(&val4);
|
||||
for (int i = 0; i < VPT; ++i) {
|
||||
val4p[i] = static_cast<float>(bufp[i]);
|
||||
}
|
||||
float val = val4.x + val4.y + val4.z + val4.w;
|
||||
float max_val = math::warpReduceMax<float>(
|
||||
max(max(val4.x, val4.y), max(val4.z, val4.w)), 0xffffffff);
|
||||
float4 tmp4 = make_float4(__expf(val4.x - max_val), __expf(val4.y - max_val),
|
||||
__expf(val4.z - max_val), __expf(val4.w - max_val));
|
||||
float* tmp4p = reinterpret_cast<float*>(&tmp4);
|
||||
float invsum = 1.f / (math::warpReduceSum<float>(
|
||||
tmp4.x + tmp4.y + tmp4.z + tmp4.w, 0xffffffff) +
|
||||
1e-6f);
|
||||
for (int i = 0; i < VPT; ++i) {
|
||||
bufp[i] = static_cast<T>(tmp4p[i] * invsum);
|
||||
}
|
||||
reinterpret_cast<VECT*>(&dst[offset + idx])[0] = buf;
|
||||
}
|
||||
|
||||
template <typename T, int VPT, int WARP_PER_BLOCK>
|
||||
__global__ void VecSoftmaxBackward(T* dst, const T* grad, const T* src,
|
||||
const int batch_size,
|
||||
const int softmax_ele) {
|
||||
const int offset =
|
||||
blockIdx.x * softmax_ele * WARP_PER_BLOCK + threadIdx.x * VPT;
|
||||
|
||||
float local_sum_gy = 0.f;
|
||||
vec_t<T, VPT> local_grad;
|
||||
vec_t<T, VPT> local_src;
|
||||
|
||||
local_grad.s =
|
||||
reinterpret_cast<const decltype(local_grad.s)*>(&grad[offset])[0];
|
||||
local_src.s = reinterpret_cast<const decltype(local_src.s)*>(&src[offset])[0];
|
||||
|
||||
for (int i = 0; i < VPT; ++i) {
|
||||
local_sum_gy += static_cast<float>(local_grad.v[i]) *
|
||||
static_cast<float>(local_src.v[i]);
|
||||
}
|
||||
float sum_gy = math::warpReduceSum<float>(local_sum_gy, 0xffffffff);
|
||||
|
||||
vec_t<T, VPT> local_dst;
|
||||
for (int i = 0; i < VPT; ++i) {
|
||||
local_dst.v[i] =
|
||||
static_cast<T>(static_cast<float>(local_src.v[i]) *
|
||||
(static_cast<float>(local_grad.v[i]) - sum_gy));
|
||||
}
|
||||
reinterpret_cast<decltype(local_dst.s)*>(&dst[offset])[0] = local_dst.s;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
class SoftmaxCUDNNKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x = ctx.Input<Tensor>("X");
|
||||
auto* out = ctx.Output<Tensor>("Out");
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
auto* out_data = out->data<T>();
|
||||
|
||||
auto dims = x->dims();
|
||||
const int rank = dims.size();
|
||||
const int axis = CanonicalAxis(ctx.Attr<int>("axis"), rank);
|
||||
const int dim = dims[axis];
|
||||
const int N = SizeToAxis(axis, dims);
|
||||
const int D = SizeOutAxis(axis, dims);
|
||||
|
||||
constexpr int warps_per_block = 4;
|
||||
if (D == 1 && dim == 128 && N % warps_per_block == 0 && sizeof(T) <= 4) {
|
||||
// a warp for a batch, 4 elements for a thread, only support the softmax
|
||||
// dim size = 128 currently
|
||||
if (sizeof(T) == 2) {
|
||||
VecSoftmaxForward<
|
||||
T, int2, 4,
|
||||
warps_per_block><<<N / warps_per_block, warps_per_block * WARP_SIZE,
|
||||
0, ctx.cuda_device_context().stream()>>>(
|
||||
out_data, x->data<T>(), N, dim);
|
||||
} else if (sizeof(T) == 4) {
|
||||
VecSoftmaxForward<
|
||||
T, int4, 4,
|
||||
warps_per_block><<<N / warps_per_block, warps_per_block * WARP_SIZE,
|
||||
0, ctx.cuda_device_context().stream()>>>(
|
||||
out_data, x->data<T>(), N, dim);
|
||||
} else {
|
||||
assert(false && "not support");
|
||||
}
|
||||
} else {
|
||||
ScopedTensorDescriptor desc;
|
||||
std::vector<int> tensor_dims = {N, dim, D, 1};
|
||||
DataLayout layout = DataLayout::kNCHW;
|
||||
cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
|
||||
|
||||
auto& dev_ctx =
|
||||
ctx.template device_context<platform::CUDADeviceContext>();
|
||||
auto handle = dev_ctx.cudnn_handle();
|
||||
auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
|
||||
: CUDNN_SOFTMAX_MODE_CHANNEL;
|
||||
|
||||
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxForward(
|
||||
handle, CUDNN_SOFTMAX_ACCURATE, mode,
|
||||
platform::CudnnDataType<T>::kOne(), desc_, x->data<T>(),
|
||||
platform::CudnnDataType<T>::kZero(), desc_, out_data));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class SoftmaxGradCUDNNKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* out = ctx.Input<Tensor>("Out");
|
||||
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||
dx->mutable_data<T>(ctx.GetPlace());
|
||||
auto* dx_data = dx->data<T>();
|
||||
|
||||
auto dims = out->dims();
|
||||
const int rank = dims.size();
|
||||
const int axis = CanonicalAxis(ctx.Attr<int>("axis"), rank);
|
||||
const int dim = dims[axis];
|
||||
const int N = SizeToAxis(axis, dims);
|
||||
const int D = SizeOutAxis(axis, dims);
|
||||
|
||||
constexpr int warps_per_block = 4;
|
||||
constexpr bool warp_softmax_available =
|
||||
std::is_same<T, float>::value ||
|
||||
std::is_same<T, platform::float16>::value;
|
||||
if (D == 1 && dim == 128 && N % warps_per_block == 0 &&
|
||||
warp_softmax_available) {
|
||||
if (std::is_same<T, float>::value) {
|
||||
VecSoftmaxBackward<
|
||||
float, 4,
|
||||
warps_per_block><<<N / warps_per_block, warps_per_block * WARP_SIZE,
|
||||
0, ctx.cuda_device_context().stream()>>>(
|
||||
dx->data<float>(), dout->data<float>(), out->data<float>(), N, dim);
|
||||
} else if (std::is_same<T, platform::float16>::value) {
|
||||
VecSoftmaxBackward<
|
||||
platform::float16, 4,
|
||||
warps_per_block><<<N / warps_per_block, warps_per_block * WARP_SIZE,
|
||||
0, ctx.cuda_device_context().stream()>>>(
|
||||
dx->data<platform::float16>(), dout->data<platform::float16>(),
|
||||
out->data<platform::float16>(), N, dim);
|
||||
} else {
|
||||
PADDLE_ENFORCE_EQ(
|
||||
warp_softmax_available, true,
|
||||
platform::errors::Unimplemented(
|
||||
"Warp softmax backward is only available for fp32 and fp16"));
|
||||
}
|
||||
} else {
|
||||
ScopedTensorDescriptor desc;
|
||||
std::vector<int> tensor_dims = {N, dim, D, 1};
|
||||
DataLayout layout = DataLayout::kNCHW;
|
||||
cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
|
||||
|
||||
auto& dev_ctx =
|
||||
ctx.template device_context<platform::CUDADeviceContext>();
|
||||
auto handle = dev_ctx.cudnn_handle();
|
||||
auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
|
||||
: CUDNN_SOFTMAX_MODE_CHANNEL;
|
||||
|
||||
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxBackward(
|
||||
handle, CUDNN_SOFTMAX_ACCURATE, mode,
|
||||
platform::CudnnDataType<T>::kOne(), desc_, out->data<T>(), desc_,
|
||||
dout->data<T>(), platform::CudnnDataType<T>::kZero(), desc_,
|
||||
dx_data));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
namespace plat = paddle::platform;
|
||||
REGISTER_OP_KERNEL(softmax, CUDNN, plat::CUDAPlace,
|
||||
ops::SoftmaxCUDNNKernel<float>,
|
||||
ops::SoftmaxCUDNNKernel<double>,
|
||||
ops::SoftmaxCUDNNKernel<plat::float16>);
|
||||
REGISTER_OP_KERNEL(softmax_grad, CUDNN, plat::CUDAPlace,
|
||||
ops::SoftmaxGradCUDNNKernel<float>,
|
||||
ops::SoftmaxGradCUDNNKernel<double>,
|
||||
ops::SoftmaxGradCUDNNKernel<plat::float16>);
|
@ -1,120 +0,0 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/operators/softmax_op.h"
|
||||
#include "paddle/fluid/platform/cudnn_helper.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace platform {
|
||||
struct CUDAPlace;
|
||||
struct float16;
|
||||
} // namespace platform
|
||||
} // namespace paddle
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
|
||||
using DataLayout = platform::DataLayout;
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
static inline int SizeOutAxis(const int axis, DDim dims) {
|
||||
int size = 1;
|
||||
for (int i = axis + 1; i < dims.size(); i++) {
|
||||
size *= dims[i];
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
class SoftmaxCUDNNKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x = ctx.Input<Tensor>("X");
|
||||
auto* out = ctx.Output<Tensor>("Out");
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
auto* out_data = out->data<T>();
|
||||
|
||||
auto dims = x->dims();
|
||||
const int rank = dims.size();
|
||||
const int axis = CanonicalAxis(ctx.Attr<int>("axis"), rank);
|
||||
const int dim = dims[axis];
|
||||
const int N = SizeToAxis(axis, dims);
|
||||
const int D = SizeOutAxis(axis, dims);
|
||||
|
||||
ScopedTensorDescriptor desc;
|
||||
std::vector<int> tensor_dims = {N, dim, D, 1};
|
||||
DataLayout layout = DataLayout::kNCHW;
|
||||
cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
|
||||
|
||||
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
||||
auto handle = dev_ctx.cudnn_handle();
|
||||
auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
|
||||
: CUDNN_SOFTMAX_MODE_CHANNEL;
|
||||
|
||||
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxForward(
|
||||
handle, CUDNN_SOFTMAX_ACCURATE, mode,
|
||||
platform::CudnnDataType<T>::kOne(), desc_, x->data<T>(),
|
||||
platform::CudnnDataType<T>::kZero(), desc_, out_data));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class SoftmaxGradCUDNNKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* out = ctx.Input<Tensor>("Out");
|
||||
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||
dx->mutable_data<T>(ctx.GetPlace());
|
||||
auto* dx_data = dx->data<T>();
|
||||
|
||||
auto dims = out->dims();
|
||||
const int rank = dims.size();
|
||||
const int axis = CanonicalAxis(ctx.Attr<int>("axis"), rank);
|
||||
const int dim = dims[axis];
|
||||
const int N = SizeToAxis(axis, dims);
|
||||
const int D = SizeOutAxis(axis, dims);
|
||||
|
||||
ScopedTensorDescriptor desc;
|
||||
std::vector<int> tensor_dims = {N, dim, D, 1};
|
||||
DataLayout layout = DataLayout::kNCHW;
|
||||
cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
|
||||
|
||||
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
|
||||
auto handle = dev_ctx.cudnn_handle();
|
||||
auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
|
||||
: CUDNN_SOFTMAX_MODE_CHANNEL;
|
||||
|
||||
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxBackward(
|
||||
handle, CUDNN_SOFTMAX_ACCURATE, mode,
|
||||
platform::CudnnDataType<T>::kOne(), desc_, out->data<T>(), desc_,
|
||||
dout->data<T>(), platform::CudnnDataType<T>::kZero(), desc_, dx_data));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
namespace plat = paddle::platform;
|
||||
REGISTER_OP_KERNEL(softmax, CUDNN, plat::CUDAPlace,
|
||||
ops::SoftmaxCUDNNKernel<float>,
|
||||
ops::SoftmaxCUDNNKernel<double>,
|
||||
ops::SoftmaxCUDNNKernel<plat::float16>);
|
||||
REGISTER_OP_KERNEL(softmax_grad, CUDNN, plat::CUDAPlace,
|
||||
ops::SoftmaxGradCUDNNKernel<float>,
|
||||
ops::SoftmaxGradCUDNNKernel<double>,
|
||||
ops::SoftmaxGradCUDNNKernel<plat::float16>);
|
Loading…
Reference in new issue