|
|
|
@ -90,7 +90,6 @@ class AvgPool1D(layers.Layer):
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
|
|
|
|
|
AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
|
|
|
|
@ -181,7 +180,6 @@ class AvgPool2D(layers.Layer):
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
# max pool2d
|
|
|
|
|
input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
|
|
|
|
@ -273,7 +271,6 @@ class AvgPool3D(layers.Layer):
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
# avg pool3d
|
|
|
|
|
input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
|
|
|
|
@ -370,7 +367,6 @@ class MaxPool1D(layers.Layer):
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
|
|
|
|
|
MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0)
|
|
|
|
@ -464,7 +460,6 @@ class MaxPool2D(layers.Layer):
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
# max pool2d
|
|
|
|
|
input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
|
|
|
|
@ -556,7 +551,6 @@ class MaxPool3D(layers.Layer):
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
# max pool3d
|
|
|
|
|
input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
|
|
|
|
@ -652,7 +646,6 @@ class AdaptiveAvgPool1D(layers.Layer):
|
|
|
|
|
#
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
|
|
|
|
|
AdaptiveAvgPool1D = nn.AdaptiveAvgPool1D(output_size=16)
|
|
|
|
@ -728,7 +721,7 @@ class AdaptiveAvgPool2D(layers.Layer):
|
|
|
|
|
#
|
|
|
|
|
import paddle
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
input_data = np.random.rand(2, 3, 32, 32)
|
|
|
|
|
x = paddle.to_tensor(input_data)
|
|
|
|
|
# x.shape is [2, 3, 32, 32]
|
|
|
|
@ -816,7 +809,7 @@ class AdaptiveAvgPool3D(layers.Layer):
|
|
|
|
|
# avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
|
|
|
|
|
import paddle
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
input_data = np.random.rand(2, 3, 8, 32, 32)
|
|
|
|
|
x = paddle.to_tensor(input_data)
|
|
|
|
|
# x.shape is [2, 3, 8, 32, 32]
|
|
|
|
@ -893,7 +886,6 @@ class AdaptiveMaxPool1D(layers.Layer):
|
|
|
|
|
#
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
|
|
|
|
|
AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16)
|
|
|
|
@ -964,7 +956,7 @@ class AdaptiveMaxPool2D(layers.Layer):
|
|
|
|
|
#
|
|
|
|
|
import paddle
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
input_data = np.random.rand(2, 3, 32, 32)
|
|
|
|
|
x = paddle.to_tensor(input_data)
|
|
|
|
|
adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_mask=True)
|
|
|
|
@ -1036,7 +1028,7 @@ class AdaptiveMaxPool3D(layers.Layer):
|
|
|
|
|
# max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
|
|
|
|
|
import paddle
|
|
|
|
|
import numpy as np
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
|
|
input_data = np.random.rand(2, 3, 8, 32, 32)
|
|
|
|
|
x = paddle.to_tensor(input_data)
|
|
|
|
|
pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
|
|
|
|
|