windows fix

revert-14324-fix_vlog
dzhwinter 7 years ago
parent 85f8dd1c77
commit 962061f0a3

@ -82,7 +82,7 @@ if(CUDNN_FOUND)
if(NOT CUDNN_MAJOR_VERSION)
set(CUDNN_VERSION "???")
else()
else()
math(EXPR CUDNN_VERSION
"${CUDNN_MAJOR_VERSION} * 1000 +
${CUDNN_MINOR_VERSION} * 100 + ${CUDNN_PATCHLEVEL_VERSION}")

@ -243,7 +243,7 @@ function(cc_library TARGET_NAME)
# add libxxx.lib prefix in windows
set(${TARGET_NAME}_LIB_NAME "${CMAKE_STATIC_LIBRARY_PREFIX}${TARGET_NAME}${CMAKE_STATIC_LIBRARY_SUFFIX}" CACHE STRING "output library name for target ${TARGET_NAME}")
endif(WIN32)
message("flags" ${CMAKE_CXX_FLAGS})
if(cc_library_SRCS)
if(cc_library_SHARED OR cc_library_shared) # build *.so
add_library(${TARGET_NAME} SHARED ${cc_library_SRCS})

@ -293,26 +293,41 @@ void Executor::Run(const ProgramDesc& program, Scope* scope,
std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
const ProgramDesc& program, int block_id) {
VLOG(3) << "before create prepare" << block_id << " " << program.Size();
std::unique_ptr<ExecutorPrepareContext> ctx(
new ExecutorPrepareContext(program, block_id));
PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
VLOG(3) << "after create prepare";
// PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
VLOG(3) << "before create op_desc";
auto& block = program.Block(block_id);
VLOG(3) << "create before" << ctx->ops_.size() << " " << block.AllOps().size();
int counter = 0;
for (auto& op_desc : block.AllOps()) {
ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
VLOG(3) << "create op " << "index " << ++counter << " type " << op_desc->Type();
}
VLOG(3) << "create finished" << ctx->ops_.size() << " " << block.AllOps().size();
return ctx;
}
std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
const ProgramDesc& program, const std::vector<int>& block_ids) {
VLOG(3) << "inside prepare";
std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
VLOG(3) << "before go through block_ids";
for (auto& bid : block_ids) {
VLOG(3) << "block id" << bid;
auto* ctx = new ExecutorPrepareContext(program, bid);
PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
//PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
auto& block = program.Block(bid);
int counter = 0;
VLOG(3) << "create before" << ctx->ops_.size() << " " << block.AllOps().size();
for (auto& op_desc : block.AllOps()) {
ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
VLOG(3) << "create op " << "index " << ++counter << " type " << op_desc->Type();
}
VLOG(3) << "create finished" << ctx->ops_.size() << " " << block.AllOps().size();
result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
}
return result;

@ -88,12 +88,16 @@ bool NativePaddlePredictor::Init(
VLOG(3) << config_.model_dir;
inference_program_ = paddle::inference::Load(executor_.get(), scope_.get(),
config_.model_dir);
VLOG(3) << "load model Finish";
VLOG(3) << "load model finish";
} else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
// All parameters are saved in a single file.
// The file names should be consistent with that used
// in Python API `fluid.io.save_inference_model`.
VLOG(3) << "load program";
VLOG(3) << "load program before";
auto exe = executor_.get();
VLOG(3) << "executor_";
auto sc = scope_.get();
VLOG(3) << "scope_";
inference_program_ = paddle::inference::Load(
executor_.get(), scope_.get(), config_.prog_file, config_.param_file);
VLOG(3) << "load program finish";
@ -101,13 +105,18 @@ bool NativePaddlePredictor::Init(
LOG(ERROR) << "fail to load inference model.";
return false;
}
VLOG(3) << "prepare";
VLOG(3) << "pointer" << inference_program_.get();
VLOG(3) << "prepare before";
ctx_ = executor_->Prepare(*inference_program_, 0);
VLOG(3) << "prepare finished";
executor_->CreateVariables(*inference_program_,
sub_scope_ ? sub_scope_ : scope_.get(), 0);
VLOG(3) << "create variables";
// Get the feed_target_names and fetch_target_names
PrepareFeedFetch();
VLOG(3) << "feed fetch";
return true;
}

File diff suppressed because it is too large Load Diff

@ -0,0 +1,97 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <chrono>
#include <iostream>
#include <fstream>
#include "paddle/fluid/inference/api/paddle_inference_api.h"
namespace paddle {
std::string DIRNAME = "./LB_icnet_model";
//std::string DIRNAME = "./infer_models";
NativeConfig GetConfig() {
NativeConfig config;
config.prog_file=DIRNAME + "/__model__";
config.param_file=DIRNAME + "/__params__";
config.fraction_of_gpu_memory = 0.8;
config.use_gpu = true;
config.device = 0;
return config;
}
using Time = decltype(std::chrono::high_resolution_clock::now());
Time time() { return std::chrono::high_resolution_clock::now(); };
double time_diff(Time t1, Time t2) {
typedef std::chrono::microseconds ms;
auto diff = t2 - t1;
ms counter = std::chrono::duration_cast<ms>(diff);
return counter.count() / 1000.0;
}
void test_naive(int batch_size){
NativeConfig config = GetConfig();
// config.model_dir = model_path;
auto predictor = CreatePaddlePredictor<NativeConfig>(config);
int height = 449;
int width = 581;
//int height = 3;
//int width = 3;
int num_sum = height * width * 3 * batch_size;
std::vector<float> data;
for(int i = 0; i < num_sum; i++) {
data.push_back(0.0);
}
PaddleTensor tensor;
tensor.shape = std::vector<int>({batch_size, 3, height, width});
tensor.data.Resize(sizeof(float) * batch_size * 3 * height * width);
std::copy(data.begin(), data.end(), static_cast<float*>(tensor.data.data()));
tensor.dtype = PaddleDType::FLOAT32;
std::vector<PaddleTensor> paddle_tensor_feeds(1, tensor);
PaddleTensor tensor_out;
std::vector<PaddleTensor> outputs(1, tensor_out);
predictor->Run(paddle_tensor_feeds, &outputs, batch_size);
std::cout << "start predict123:" << std::endl;
auto time1 = time();
for(size_t i = 0; i < 2; i++) {
predictor->Run(paddle_tensor_feeds, &outputs, batch_size);
std::cout << "pass " << i;
}
auto time2 = time();
std::ofstream ofresult("naive_test_result.txt", std::ios::app);
std::cout <<"batch: " << batch_size << " predict cost: " << time_diff(time1, time2) / 100.0 << "ms" << std::endl;
std::cout << outputs.size() << std::endl;
/*
int64_t * data_o = static_cast<int64_t*>(outputs[0].data.data());
for (size_t j = 0; j < outputs[0].data.length() / sizeof(int64_t); ++j) {
ofresult << std::to_string(data_o[j]) << " ";
}
ofresult << std::endl;
ofresult.close();
*/
}
} // namespace paddle
int main(int argc, char** argv) {
paddle::test_naive(1 << 0);
return 0;
}

@ -133,6 +133,7 @@ void MainThreads(int num_threads, bool use_gpu) {
} // namespace paddle
int main(int argc, char** argv) {
FLAGS_dirname = "./word2vec.inference.model";
google::ParseCommandLineFlags(&argc, &argv, true);
paddle::demo::Main(false /* use_gpu*/);
paddle::demo::MainThreads(1, false /* use_gpu*/);

Loading…
Cancel
Save