|
|
|
@ -23,6 +23,8 @@ import paddle.v2.networks as networks
|
|
|
|
|
pixel = layer.data(name='pixel', type=data_type.dense_vector(128))
|
|
|
|
|
label = layer.data(name='label', type=data_type.integer_value(10))
|
|
|
|
|
weight = layer.data(name='weight', type=data_type.dense_vector(1))
|
|
|
|
|
combine_weight = layer.data(
|
|
|
|
|
name='weight_combine', type=data_type.dense_vector(10))
|
|
|
|
|
score = layer.data(name='score', type=data_type.dense_vector(1))
|
|
|
|
|
|
|
|
|
|
hidden = layer.fc(input=pixel,
|
|
|
|
@ -81,7 +83,8 @@ class AggregateLayerTest(unittest.TestCase):
|
|
|
|
|
class MathLayerTest(unittest.TestCase):
|
|
|
|
|
def test_math_layer(self):
|
|
|
|
|
addto = layer.addto(input=[pixel, pixel])
|
|
|
|
|
linear_comb = layer.linear_comb(weights=weight, vectors=hidden, size=10)
|
|
|
|
|
linear_comb = layer.linear_comb(
|
|
|
|
|
weights=combine_weight, vectors=hidden, size=10)
|
|
|
|
|
interpolation = layer.interpolation(
|
|
|
|
|
input=[hidden, hidden], weight=score)
|
|
|
|
|
bilinear = layer.bilinear_interp(input=conv, out_size_x=4, out_size_y=4)
|
|
|
|
|