Rename DataBase into create_data_config_proto

avx_docs
Yi Wang 8 years ago
parent 9763761f05
commit 996b1de1d8

@ -894,7 +894,7 @@ class MaxOut(Cfg):
self.add_keys(locals())
def DataBase(async_load_data=False,
def create_data_config_proto(async_load_data=False,
constant_slots=None,
data_ratio=1,
is_main_data=True,
@ -924,7 +924,7 @@ def SimpleData(files=None,
context_len=None,
buffer_capacity=None,
**xargs):
data_config = DataBase(**xargs)
data_config = create_data_config_proto(**xargs)
data_config.type = 'simple'
data_config.files = files
data_config.feat_dim = feat_dim
@ -946,7 +946,7 @@ def PyData(files=None,
constant_slots=None,
load_thread_num=None,
**xargs):
data_config = DataBase(**xargs)
data_config = create_data_config_proto(**xargs)
data_config.type = 'py'
if load_data_module in g_py_module_name_list:
@ -997,7 +997,7 @@ def ProtoData(files=None,
constant_slots=None,
load_thread_num=None,
**xargs):
data_config = DataBase(**xargs)
data_config = create_data_config_proto(**xargs)
if type is None:
data_config.type = 'proto'
else:
@ -1036,7 +1036,7 @@ def Data(type,
buffer_capacity=None,
**xargs):
data_config = DataBase(**xargs)
data_config = create_data_config_proto(**xargs)
data_config.type = type
data_config.files = files
data_config.feat_dim = feat_dim
@ -1927,8 +1927,8 @@ class BatchNormLayer(LayerBase):
image_conf = self.config.inputs[0].image_conf
parse_image(self.inputs[0].image, input_layer.name, image_conf)
# Only pass the width and height of input to batch_norm layer
# when either of it is non-zero.
# Only pass the width and height of input to batch_norm layer
# when either of it is non-zero.
if input_layer.width != 0 or input_layer.height != 0:
self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
image_conf.channels, False)

@ -58,8 +58,8 @@ def define_py_data_source(file_list,
:param obj: python object name. May be a function name if using
PyDataProviderWrapper.
:type obj: basestring
:param args: The best practice is using dict to pass arguments into
DataProvider, and use :code:`@init_hook_wrapper` to
:param args: The best practice is using dict to pass arguments into
DataProvider, and use :code:`@init_hook_wrapper` to
receive arguments.
:type args: string or picklable object
:param async: Load Data asynchronously or not.
@ -98,7 +98,7 @@ def define_py_data_sources(train_list,
The annotation is almost the same as define_py_data_sources2, except that
it can specific train_async and data_cls.
:param data_cls:
:param data_cls:
:param train_list: Train list name.
:type train_list: basestring
:param test_list: Test list name.
@ -111,8 +111,8 @@ def define_py_data_sources(train_list,
a tuple or list to this argument.
:type obj: basestring or tuple or list
:param args: The best practice is using dict() to pass arguments into
DataProvider, and use :code:`@init_hook_wrapper` to receive
arguments. If train and test is different, then pass a tuple
DataProvider, and use :code:`@init_hook_wrapper` to receive
arguments. If train and test is different, then pass a tuple
or list to this argument.
:type args: string or picklable object or list or tuple.
:param train_async: Is training data load asynchronously or not.
@ -163,12 +163,12 @@ def define_py_data_sources2(train_list, test_list, module, obj, args=None):
.. code-block:: python
define_py_data_sources2(train_list="train.list",
test_list="test.list",
define_py_data_sources2(train_list="train.list",
test_list="test.list",
module="data_provider"
# if train/test use different configurations,
# obj=["process_train", "process_test"]
obj="process",
obj="process",
args={"dictionary": dict_name})
The related data provider can refer to :ref:`api_pydataprovider2_sequential_model` .
@ -185,8 +185,8 @@ def define_py_data_sources2(train_list, test_list, module, obj, args=None):
a tuple or list to this argument.
:type obj: basestring or tuple or list
:param args: The best practice is using dict() to pass arguments into
DataProvider, and use :code:`@init_hook_wrapper` to receive
arguments. If train and test is different, then pass a tuple
DataProvider, and use :code:`@init_hook_wrapper` to receive
arguments. If train and test is different, then pass a tuple
or list to this argument.
:type args: string or picklable object or list or tuple.
:return: None
@ -195,7 +195,7 @@ def define_py_data_sources2(train_list, test_list, module, obj, args=None):
def py_data2(files, load_data_module, load_data_object, load_data_args,
**kwargs):
data = DataBase()
data = create_data_config_proto()
data.type = 'py2'
data.files = files
data.load_data_module = load_data_module

Loading…
Cancel
Save