|
|
|
@ -24,7 +24,7 @@ using LoDTensor = framework::LoDTensor;
|
|
|
|
|
static constexpr int kROISize = 4;
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
|
void pre_calc_for_bilinear_interpolate(
|
|
|
|
|
void PreCalcForBilinearInterpolate(
|
|
|
|
|
const platform::DeviceContext& ctx, const int height, const int width,
|
|
|
|
|
const int pooled_height, const int pooled_width, const int iy_upper,
|
|
|
|
|
const int ix_upper, T roi_ymin, T roi_xmin, T bin_size_h, T bin_size_w,
|
|
|
|
@ -53,12 +53,8 @@ void pre_calc_for_bilinear_interpolate(
|
|
|
|
|
pre_calc_index += 1;
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
if (y <= 0) {
|
|
|
|
|
y = 0;
|
|
|
|
|
}
|
|
|
|
|
if (x <= 0) {
|
|
|
|
|
x = 0;
|
|
|
|
|
}
|
|
|
|
|
y = y <= 0 ? 0 : y;
|
|
|
|
|
x = x <= 0 ? 0 : x;
|
|
|
|
|
|
|
|
|
|
int y_low = static_cast<int>(y);
|
|
|
|
|
int x_low = static_cast<int>(x);
|
|
|
|
@ -104,12 +100,8 @@ void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
|
|
|
|
|
x_low = x_high = y_low = y_high = -1;
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
if (y <= 0) {
|
|
|
|
|
y = 0;
|
|
|
|
|
}
|
|
|
|
|
if (x <= 0) {
|
|
|
|
|
x = 0;
|
|
|
|
|
}
|
|
|
|
|
y = y <= 0 ? 0 : y;
|
|
|
|
|
x = x <= 0 ? 0 : x;
|
|
|
|
|
y_low = static_cast<int>(y);
|
|
|
|
|
x_low = static_cast<int>(x);
|
|
|
|
|
if (y_low >= height - 1) {
|
|
|
|
@ -139,7 +131,6 @@ void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
|
|
|
|
|
*(batch_grad_data + y_high * width + x_low) += diff3;
|
|
|
|
|
*(batch_grad_data + y_high * width + x_high) += diff4;
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename DeviceContext, typename T>
|
|
|
|
@ -214,7 +205,7 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
pre_pos.Resize({pre_size, kROISize});
|
|
|
|
|
pre_w.Resize({pre_size, kROISize});
|
|
|
|
|
|
|
|
|
|
pre_calc_for_bilinear_interpolate(
|
|
|
|
|
PreCalcForBilinearInterpolate(
|
|
|
|
|
dev_ctx, height, width, pooled_height, pooled_width, roi_bin_grid_h,
|
|
|
|
|
roi_bin_grid_w, roi_ymin, roi_xmin, bin_size_h, bin_size_w,
|
|
|
|
|
roi_bin_grid_h, roi_bin_grid_w, &pre_pos, &pre_w);
|
|
|
|
@ -245,7 +236,6 @@ class CPUROIAlignOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
}
|
|
|
|
|
rois_data += roi_stride[0];
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
@ -264,79 +254,78 @@ class CPUROIAlignGradOpKernel : public framework::OpKernel<T> {
|
|
|
|
|
auto spatial_scale = ctx.Attr<float>("spatial_scale");
|
|
|
|
|
auto sampling_ratio = ctx.Attr<int>("sampling_ratio");
|
|
|
|
|
auto in_dims = in->dims();
|
|
|
|
|
if (in_grad) {
|
|
|
|
|
int channels = in_dims[1];
|
|
|
|
|
int height = in_dims[2];
|
|
|
|
|
int width = in_dims[3];
|
|
|
|
|
int rois_num = rois->dims()[0];
|
|
|
|
|
Tensor roi_batch_id_list;
|
|
|
|
|
roi_batch_id_list.Resize({rois_num});
|
|
|
|
|
int* roi_batch_id_data =
|
|
|
|
|
roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
|
|
|
|
|
if (!in_grad) {
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
int channels = in_dims[1];
|
|
|
|
|
int height = in_dims[2];
|
|
|
|
|
int width = in_dims[3];
|
|
|
|
|
int rois_num = rois->dims()[0];
|
|
|
|
|
Tensor roi_batch_id_list;
|
|
|
|
|
roi_batch_id_list.Resize({rois_num});
|
|
|
|
|
int* roi_batch_id_data =
|
|
|
|
|
roi_batch_id_list.mutable_data<int>(ctx.GetPlace());
|
|
|
|
|
|
|
|
|
|
auto rois_lod = rois->lod().back();
|
|
|
|
|
int rois_batch_size = rois_lod.size() - 1;
|
|
|
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
|
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
|
|
|
roi_batch_id_data[i] = n;
|
|
|
|
|
}
|
|
|
|
|
auto rois_lod = rois->lod().back();
|
|
|
|
|
int rois_batch_size = rois_lod.size() - 1;
|
|
|
|
|
for (int n = 0; n < rois_batch_size; ++n) {
|
|
|
|
|
for (size_t i = rois_lod[n]; i < rois_lod[n + 1]; ++i) {
|
|
|
|
|
roi_batch_id_data[i] = n;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
const T* rois_data = rois->data<T>();
|
|
|
|
|
const T* out_grad_data = out_grad->data<T>();
|
|
|
|
|
T* in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
const T* rois_data = rois->data<T>();
|
|
|
|
|
const T* out_grad_data = out_grad->data<T>();
|
|
|
|
|
T* in_grad_data = in_grad->mutable_data<T>(ctx.GetPlace());
|
|
|
|
|
|
|
|
|
|
auto in_stride = framework::stride(in->dims());
|
|
|
|
|
auto roi_stride = framework::stride(rois->dims());
|
|
|
|
|
auto out_stride = framework::stride(out_grad->dims());
|
|
|
|
|
auto in_stride = framework::stride(in->dims());
|
|
|
|
|
auto roi_stride = framework::stride(rois->dims());
|
|
|
|
|
auto out_stride = framework::stride(out_grad->dims());
|
|
|
|
|
|
|
|
|
|
for (int n = 0; n < rois_num; ++n) {
|
|
|
|
|
int roi_batch_idx = roi_batch_id_data[n];
|
|
|
|
|
T roi_xmin = rois_data[0] * spatial_scale;
|
|
|
|
|
T roi_ymin = rois_data[1] * spatial_scale;
|
|
|
|
|
T roi_xmax = rois_data[2] * spatial_scale;
|
|
|
|
|
T roi_ymax = rois_data[3] * spatial_scale;
|
|
|
|
|
T roi_width = std::max(roi_xmax - roi_xmin, static_cast<T>(1.));
|
|
|
|
|
T roi_height = std::max(roi_ymax - roi_ymin, static_cast<T>(1.));
|
|
|
|
|
T bin_size_h =
|
|
|
|
|
static_cast<T>(roi_height) / static_cast<T>(pooled_height);
|
|
|
|
|
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
|
|
|
|
|
for (int c = 0; c < channels; ++c) {
|
|
|
|
|
T* batch_grad_data =
|
|
|
|
|
in_grad_data + roi_batch_idx * in_stride[0] + c * in_stride[1];
|
|
|
|
|
const T* batch_out_grad_data =
|
|
|
|
|
out_grad_data + n * out_stride[0] + c * out_stride[1];
|
|
|
|
|
for (int ph = 0; ph < pooled_height; ++ph) {
|
|
|
|
|
for (int pw = 0; pw < pooled_width; ++pw) {
|
|
|
|
|
int pool_index = ph * pooled_width + pw;
|
|
|
|
|
T out_grad_this_bin = batch_out_grad_data[pool_index];
|
|
|
|
|
int roi_bin_grid_h = (sampling_ratio > 0)
|
|
|
|
|
? sampling_ratio
|
|
|
|
|
: ceil(roi_height / pooled_height);
|
|
|
|
|
int roi_bin_grid_w = (sampling_ratio > 0)
|
|
|
|
|
? sampling_ratio
|
|
|
|
|
: ceil(roi_width / pooled_width);
|
|
|
|
|
T count = roi_bin_grid_h * roi_bin_grid_w;
|
|
|
|
|
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
|
|
|
|
|
const T y = roi_ymin + ph * bin_size_h +
|
|
|
|
|
static_cast<T>(iy + .5f) * bin_size_h /
|
|
|
|
|
static_cast<T>(roi_bin_grid_h);
|
|
|
|
|
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
|
|
|
|
|
const T x = roi_xmin + pw * bin_size_w +
|
|
|
|
|
static_cast<T>(ix + .5f) * bin_size_w /
|
|
|
|
|
static_cast<T>(roi_bin_grid_w);
|
|
|
|
|
bilinear_interpolate_gradient(height, width, y, x,
|
|
|
|
|
out_grad_this_bin, count,
|
|
|
|
|
batch_grad_data);
|
|
|
|
|
}
|
|
|
|
|
for (int n = 0; n < rois_num; ++n) {
|
|
|
|
|
int roi_batch_idx = roi_batch_id_data[n];
|
|
|
|
|
T roi_xmin = rois_data[0] * spatial_scale;
|
|
|
|
|
T roi_ymin = rois_data[1] * spatial_scale;
|
|
|
|
|
T roi_xmax = rois_data[2] * spatial_scale;
|
|
|
|
|
T roi_ymax = rois_data[3] * spatial_scale;
|
|
|
|
|
T roi_width = std::max(roi_xmax - roi_xmin, static_cast<T>(1.));
|
|
|
|
|
T roi_height = std::max(roi_ymax - roi_ymin, static_cast<T>(1.));
|
|
|
|
|
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
|
|
|
|
|
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
|
|
|
|
|
for (int c = 0; c < channels; ++c) {
|
|
|
|
|
T* batch_grad_data =
|
|
|
|
|
in_grad_data + roi_batch_idx * in_stride[0] + c * in_stride[1];
|
|
|
|
|
const T* batch_out_grad_data =
|
|
|
|
|
out_grad_data + n * out_stride[0] + c * out_stride[1];
|
|
|
|
|
for (int ph = 0; ph < pooled_height; ++ph) {
|
|
|
|
|
for (int pw = 0; pw < pooled_width; ++pw) {
|
|
|
|
|
int pool_index = ph * pooled_width + pw;
|
|
|
|
|
T out_grad_this_bin = batch_out_grad_data[pool_index];
|
|
|
|
|
int roi_bin_grid_h = (sampling_ratio > 0)
|
|
|
|
|
? sampling_ratio
|
|
|
|
|
: ceil(roi_height / pooled_height);
|
|
|
|
|
int roi_bin_grid_w = (sampling_ratio > 0)
|
|
|
|
|
? sampling_ratio
|
|
|
|
|
: ceil(roi_width / pooled_width);
|
|
|
|
|
T count = roi_bin_grid_h * roi_bin_grid_w;
|
|
|
|
|
for (int iy = 0; iy < roi_bin_grid_h; iy++) {
|
|
|
|
|
const T y = roi_ymin + ph * bin_size_h +
|
|
|
|
|
static_cast<T>(iy + .5f) * bin_size_h /
|
|
|
|
|
static_cast<T>(roi_bin_grid_h);
|
|
|
|
|
for (int ix = 0; ix < roi_bin_grid_w; ix++) {
|
|
|
|
|
const T x = roi_xmin + pw * bin_size_w +
|
|
|
|
|
static_cast<T>(ix + .5f) * bin_size_w /
|
|
|
|
|
static_cast<T>(roi_bin_grid_w);
|
|
|
|
|
bilinear_interpolate_gradient(height, width, y, x,
|
|
|
|
|
out_grad_this_bin, count,
|
|
|
|
|
batch_grad_data);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
rois_data += roi_stride[0];
|
|
|
|
|
}
|
|
|
|
|
rois_data += roi_stride[0];
|
|
|
|
|
}
|
|
|
|
|
return;
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
} // namespace operators
|
|
|
|
|