parent
2d31ab5f86
commit
9a44f3d6da
@ -0,0 +1,81 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/operators/dropout_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using framework::Tensor;
|
||||
|
||||
class DropoutOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
|
||||
auto dims = ctx.Input<Tensor>("X")->dims();
|
||||
ctx.Output<Tensor>("Out")->Resize(dims);
|
||||
ctx.Output<Tensor>("Mask")->Resize(dims);
|
||||
}
|
||||
};
|
||||
|
||||
class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
DropoutOpMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X", "The input of dropout op.");
|
||||
AddOutput("Out", "The output of dropout op.");
|
||||
AddOutput("Mask", "The dropout mask.").AsIntermediate();
|
||||
|
||||
AddComment(R"DOC(Dropout Operator.)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class DropoutOpGrad : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
protected:
|
||||
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Mask"), "Mask must not be null.");
|
||||
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
|
||||
"Input(Out@GRAD) must not be null.");
|
||||
|
||||
auto x_dims = ctx.Input<Tensor>("X")->dims();
|
||||
auto mask_dims = ctx.Input<Tensor>("Mask")->dims();
|
||||
auto out_dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
|
||||
PADDLE_ENFORCE_EQ(x_dims, out_dims,
|
||||
"Dimensions of Input(X) and Out must be the same.");
|
||||
PADDLE_ENFORCE_EQ(x_dims, mask_dims,
|
||||
"Dimensions of Input(X) and Mask must be the same.");
|
||||
|
||||
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||||
x_grad->Resize(x_dims);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP(dropout, ops::DropoutOp, ops::DropoutOpMaker, dropout_grad,
|
||||
ops::DropoutOpGrad);
|
||||
REGISTER_OP_CPU_KERNEL(dropout,
|
||||
ops::DropoutKernel<paddle::platform::CPUPlace, float>);
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
dropout_grad, ops::DropoutGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,22 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#define EIGEN_USE_GPU
|
||||
#include "paddle/operators/dropout_op.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_GPU_KERNEL(dropout,
|
||||
ops::DropoutKernel<paddle::platform::GPUPlace, float>);
|
||||
REGISTER_OP_GPU_KERNEL(
|
||||
dropout_grad, ops::DropoutGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,70 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/eigen.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
template <typename T, int MajorType = Eigen::RowMajor,
|
||||
typename IndexType = Eigen::DenseIndex>
|
||||
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
|
||||
|
||||
template <typename Place, typename T>
|
||||
class DropoutKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* x = context.Input<Tensor>("X");
|
||||
auto* y = context.Output<Tensor>("Out");
|
||||
auto* mask = context.Output<Tensor>("Mask");
|
||||
mask->mutable_data<T>(context.GetPlace());
|
||||
y->mutable_data<T>(context.GetPlace());
|
||||
|
||||
auto dims = x->dims();
|
||||
auto X = EigenMatrix<T>::From(*x);
|
||||
auto Y = EigenMatrix<T>::From(*y);
|
||||
auto M = EigenMatrix<T>::From(*mask);
|
||||
|
||||
auto place = context.GetEigenDevice<Place>();
|
||||
M.device(place).setRandom<UniformRandomGenerator>();
|
||||
float dropout_prob = context.op_.GetAttr<float>("dropout_prob");
|
||||
M.device(place) = (M > dropout_prob).cast<float>();
|
||||
Y.device(place) = X * Y;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class DropoutGradKernel : public framework::OpKernel {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* grad_x = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
auto* grad_y = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* mask = context.Input<Tensor>("Mask");
|
||||
grad_x->mutable_data<T>(context.GetPlace());
|
||||
|
||||
auto dims = grad_x->dims();
|
||||
auto M = EigenMatrix<T>::From(*mask);
|
||||
auto dX = EigenMatrix<T>::From(*grad_x);
|
||||
auto dY = EigenMatrix<T>::From(*grad_y);
|
||||
|
||||
auto place = context.GetEigenDevice<Place>();
|
||||
dX.device(place) = dY * M;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
Loading…
Reference in new issue