Change-Id: I8e0a8ea6fc2760652d9c76440a539c90860062d3avx_docs
parent
699d5f2638
commit
9a9de9240d
@ -0,0 +1 @@
|
||||
dummy_file_no_use
|
@ -0,0 +1,35 @@
|
||||
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.trainer.PyDataProvider2 import *
|
||||
|
||||
data = [
|
||||
[[[1, 3, 2], [4, 5, 2]], 0],
|
||||
[[[0, 2], [2, 5], [0, 1, 2]], 1],
|
||||
]
|
||||
|
||||
@provider(input_types=[integer_value_sub_sequence(10),
|
||||
integer_value(2)])
|
||||
def process_subseq(settings, file_name):
|
||||
for d in data:
|
||||
yield d
|
||||
|
||||
@provider(input_types=[integer_value_sequence(10),
|
||||
integer_value(2)])
|
||||
def process_seq(settings, file_name):
|
||||
for d in data:
|
||||
seq = []
|
||||
for subseq in d[0]:
|
||||
seq += subseq
|
||||
yield seq, d[1]
|
@ -0,0 +1,75 @@
|
||||
#edit-mode: -*- python -*-
|
||||
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
######################## data source ################################
|
||||
define_py_data_sources2(train_list='gserver/tests/Sequence/dummy.list',
|
||||
test_list=None,
|
||||
module='rnn_data_provider',
|
||||
obj='process_subseq')
|
||||
|
||||
|
||||
settings(batch_size=2, learning_rate=0.01)
|
||||
######################## network configure ################################
|
||||
dict_dim = 10
|
||||
word_dim = 8
|
||||
hidden_dim = 8
|
||||
label_dim = 3
|
||||
|
||||
data = data_layer(name="word", size=dict_dim)
|
||||
|
||||
emb = embedding_layer(input=data, size=word_dim)
|
||||
|
||||
# This hierachical RNN is designed to be equivalent to the simple RNN in
|
||||
# sequence_rnn.conf
|
||||
|
||||
def outer_step(x):
|
||||
outer_mem = memory(name="outer_rnn_state", size=hidden_dim)
|
||||
def inner_step(y):
|
||||
inner_mem = memory(name="inner_rnn_state",
|
||||
size=hidden_dim,
|
||||
boot_layer=outer_mem)
|
||||
return fc_layer(input=[y, inner_mem],
|
||||
size=hidden_dim,
|
||||
act=TanhActivation(),
|
||||
bias_attr=True,
|
||||
name="inner_rnn_state")
|
||||
|
||||
inner_rnn_output = recurrent_group(
|
||||
step=inner_step,
|
||||
input=x)
|
||||
last = last_seq(input=inner_rnn_output, name="outer_rnn_state")
|
||||
|
||||
# "return last" should also work. But currently RecurrentGradientMachine
|
||||
# does not handle it correctly. Current implementation requires that
|
||||
# all the out links are from sequences. However, it does not report error
|
||||
# when the out links are not sequences.
|
||||
return inner_rnn_output
|
||||
|
||||
out = recurrent_group(
|
||||
step=outer_step,
|
||||
input=SubsequenceInput(emb))
|
||||
|
||||
value_printer_evaluator(input=out)
|
||||
|
||||
rep = last_seq(input=out)
|
||||
prob = fc_layer(size=label_dim,
|
||||
input=rep,
|
||||
act=SoftmaxActivation(),
|
||||
bias_attr=True)
|
||||
|
||||
outputs(classification_cost(input=prob,
|
||||
label=data_layer(name="label", size=label_dim)))
|
@ -0,0 +1,57 @@
|
||||
#edit-mode: -*- python -*-
|
||||
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
######################## data source ################################
|
||||
define_py_data_sources2(train_list='gserver/tests/Sequence/dummy.list',
|
||||
test_list=None,
|
||||
module='rnn_data_provider',
|
||||
obj='process_seq')
|
||||
|
||||
|
||||
settings(batch_size=2, learning_rate=0.01)
|
||||
######################## network configure ################################
|
||||
dict_dim = 10
|
||||
word_dim = 8
|
||||
hidden_dim = 8
|
||||
label_dim = 3
|
||||
|
||||
data = data_layer(name="word", size=dict_dim)
|
||||
|
||||
emb = embedding_layer(input=data, size=word_dim)
|
||||
|
||||
def step(y):
|
||||
mem = memory(name="rnn_state", size=hidden_dim)
|
||||
return fc_layer(input=[y, mem],
|
||||
size=hidden_dim,
|
||||
act=TanhActivation(),
|
||||
bias_attr=True,
|
||||
name="rnn_state")
|
||||
|
||||
out = recurrent_group(
|
||||
step=step,
|
||||
input=emb)
|
||||
|
||||
value_printer_evaluator(input=out)
|
||||
|
||||
rep = last_seq(input=out)
|
||||
prob = fc_layer(size=label_dim,
|
||||
input=rep,
|
||||
act=SoftmaxActivation(),
|
||||
bias_attr=True)
|
||||
|
||||
outputs(classification_cost(input=prob,
|
||||
label=data_layer(name="label", size=label_dim)))
|
Loading…
Reference in new issue