memory leak for cpu (#21174)
* add fake init for the trainer, fix large memory hold in the trainer * do not merge recv vars from a remote endpoint, test=develop * add recv and save op, merge slice var in one op, save memory * remove hsigmoid with pull sparse, test=developpaddle_tiny_install
parent
03133c2c58
commit
9ad940fdfe
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,143 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import traceback
|
||||
import math
|
||||
import collections
|
||||
|
||||
import six
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import gc
|
||||
|
||||
gc.set_debug(gc.DEBUG_COLLECTABLE)
|
||||
|
||||
import paddle.fluid as fluid
|
||||
from test_dist_transpiler import TranspilerTest
|
||||
|
||||
|
||||
class TestFakeInit(TranspilerTest):
|
||||
def net_conf(self):
|
||||
dict_size, embedding_size, neg_num = 10000, 8, 5
|
||||
|
||||
input_word = fluid.layers.data(
|
||||
name="input_word", shape=[1], dtype='int64', lod_level=1)
|
||||
true_word = fluid.layers.data(
|
||||
name='true_label', shape=[1], dtype='int64', lod_level=1)
|
||||
neg_word = fluid.layers.data(
|
||||
name="neg_label", shape=[1], dtype='int64', lod_level=1)
|
||||
inputs = [input_word, true_word, neg_word]
|
||||
|
||||
init_width = 0.5 / embedding_size
|
||||
input_emb = fluid.layers.embedding(
|
||||
input=inputs[0],
|
||||
is_sparse=True,
|
||||
size=[dict_size, embedding_size],
|
||||
param_attr=fluid.ParamAttr(
|
||||
name='emb',
|
||||
initializer=fluid.initializer.Uniform(-init_width, init_width)))
|
||||
|
||||
true_emb_w = fluid.layers.embedding(
|
||||
input=inputs[1],
|
||||
is_sparse=True,
|
||||
size=[dict_size, embedding_size],
|
||||
param_attr=fluid.ParamAttr(
|
||||
name='emb_w',
|
||||
initializer=fluid.initializer.Constant(value=0.0)))
|
||||
|
||||
true_emb_b = fluid.layers.embedding(
|
||||
input=inputs[1],
|
||||
is_sparse=True,
|
||||
size=[dict_size, 1],
|
||||
param_attr=fluid.ParamAttr(
|
||||
name='emb_b',
|
||||
initializer=fluid.initializer.Constant(value=0.0)))
|
||||
|
||||
neg_word_reshape = fluid.layers.reshape(inputs[2], shape=[-1, 1])
|
||||
neg_word_reshape.stop_gradient = True
|
||||
|
||||
neg_emb_w = fluid.layers.embedding(
|
||||
input=neg_word_reshape,
|
||||
is_sparse=True,
|
||||
size=[dict_size, embedding_size],
|
||||
param_attr=fluid.ParamAttr(
|
||||
name='emb_w', learning_rate=1.0))
|
||||
|
||||
neg_emb_w_re = fluid.layers.reshape(
|
||||
neg_emb_w, shape=[-1, neg_num, embedding_size])
|
||||
|
||||
neg_emb_b = fluid.layers.embedding(
|
||||
input=neg_word_reshape,
|
||||
is_sparse=True,
|
||||
size=[dict_size, 1],
|
||||
param_attr=fluid.ParamAttr(
|
||||
name='emb_b', learning_rate=1.0))
|
||||
|
||||
neg_emb_b_vec = fluid.layers.reshape(neg_emb_b, shape=[-1, neg_num])
|
||||
|
||||
true_logits = fluid.layers.elementwise_add(
|
||||
fluid.layers.reduce_sum(
|
||||
fluid.layers.elementwise_mul(input_emb, true_emb_w),
|
||||
dim=1,
|
||||
keep_dim=True),
|
||||
true_emb_b)
|
||||
|
||||
input_emb_re = fluid.layers.reshape(
|
||||
input_emb, shape=[-1, 1, embedding_size])
|
||||
|
||||
neg_matmul = fluid.layers.matmul(
|
||||
input_emb_re, neg_emb_w_re, transpose_y=True)
|
||||
neg_matmul_re = fluid.layers.reshape(neg_matmul, shape=[-1, neg_num])
|
||||
neg_logits = fluid.layers.elementwise_add(neg_matmul_re, neg_emb_b_vec)
|
||||
# nce loss
|
||||
label_ones = fluid.layers.fill_constant_batch_size_like(
|
||||
true_logits, shape=[-1, 1], value=1.0, dtype='float32')
|
||||
label_zeros = fluid.layers.fill_constant_batch_size_like(
|
||||
true_logits, shape=[-1, neg_num], value=0.0, dtype='float32')
|
||||
|
||||
true_xent = fluid.layers.sigmoid_cross_entropy_with_logits(true_logits,
|
||||
label_ones)
|
||||
neg_xent = fluid.layers.sigmoid_cross_entropy_with_logits(neg_logits,
|
||||
label_zeros)
|
||||
cost = fluid.layers.elementwise_add(
|
||||
fluid.layers.reduce_sum(
|
||||
true_xent, dim=1),
|
||||
fluid.layers.reduce_sum(
|
||||
neg_xent, dim=1))
|
||||
avg_cost = fluid.layers.reduce_mean(cost)
|
||||
|
||||
sgd_optimizer = fluid.optimizer.SGD(
|
||||
learning_rate=fluid.layers.exponential_decay(
|
||||
learning_rate=1.0,
|
||||
decay_steps=2100,
|
||||
decay_rate=0.1,
|
||||
staircase=True))
|
||||
sgd_optimizer.minimize(avg_cost)
|
||||
|
||||
def transpiler_test_impl(self):
|
||||
trainer, startup = self.get_trainer()
|
||||
|
||||
fake_init_ops = []
|
||||
for op in startup.global_block().ops:
|
||||
if op.type == "fake_init":
|
||||
fake_init_ops.append(op)
|
||||
|
||||
self.assertEqual(len(fake_init_ops), 3)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue