|
|
|
@ -12,7 +12,7 @@
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
|
import numpy as np
|
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
@ -243,7 +243,7 @@ class TestParallelExecutorBase(unittest.TestCase):
|
|
|
|
|
begin = time.time()
|
|
|
|
|
first_loss, = run_executor(
|
|
|
|
|
exe=exe, feed=feed_dict, fetch_list=[loss.name])
|
|
|
|
|
first_loss = numpy.array(first_loss)
|
|
|
|
|
first_loss = np.array(first_loss)
|
|
|
|
|
|
|
|
|
|
for i in xrange(iter):
|
|
|
|
|
run_executor(exe=exe, feed=feed_dict, fetch_list=[])
|
|
|
|
@ -256,7 +256,7 @@ class TestParallelExecutorBase(unittest.TestCase):
|
|
|
|
|
print "%.4f Instance per second" % (
|
|
|
|
|
(batch_size * iter + 2) / (end - begin))
|
|
|
|
|
|
|
|
|
|
last_loss = numpy.array(last_loss)
|
|
|
|
|
last_loss = np.array(last_loss)
|
|
|
|
|
|
|
|
|
|
print first_loss, last_loss
|
|
|
|
|
# self.assertGreater(first_loss[0], last_loss[0])
|
|
|
|
@ -284,8 +284,8 @@ class TestMNIST(TestParallelExecutorBase):
|
|
|
|
|
self.check_network_convergence(simple_fc_net)
|
|
|
|
|
self.check_network_convergence(simple_fc_net, allow_op_delay=True)
|
|
|
|
|
|
|
|
|
|
img = numpy.zeros(shape=[32, 784], dtype='float32')
|
|
|
|
|
label = numpy.ones(shape=[32, 1], dtype='int64')
|
|
|
|
|
img = np.zeros(shape=[32, 784], dtype='float32')
|
|
|
|
|
label = np.ones(shape=[32, 1], dtype='int64')
|
|
|
|
|
self.check_network_convergence(
|
|
|
|
|
simple_fc_net, feed_dict={"image": img,
|
|
|
|
|
"label": label})
|
|
|
|
@ -294,8 +294,8 @@ class TestMNIST(TestParallelExecutorBase):
|
|
|
|
|
self.check_simple_fc_convergence()
|
|
|
|
|
|
|
|
|
|
def check_simple_fc_parallel_accuracy(self):
|
|
|
|
|
img = numpy.zeros(shape=[32, 784], dtype='float32')
|
|
|
|
|
label = numpy.ones(shape=[32, 1], dtype='int64')
|
|
|
|
|
img = np.zeros(shape=[32, 784], dtype='float32')
|
|
|
|
|
label = np.ones(shape=[32, 1], dtype='int64')
|
|
|
|
|
single_first_loss, single_last_loss = self.check_network_convergence(
|
|
|
|
|
method=simple_fc_net,
|
|
|
|
|
seed=1000,
|
|
|
|
@ -319,8 +319,8 @@ class TestMNIST(TestParallelExecutorBase):
|
|
|
|
|
|
|
|
|
|
def check_batchnorm_fc_convergence(self):
|
|
|
|
|
self.check_network_convergence(fc_with_batchnorm)
|
|
|
|
|
img = numpy.zeros(shape=[32, 784], dtype='float32')
|
|
|
|
|
label = numpy.ones(shape=[32, 1], dtype='int64')
|
|
|
|
|
img = np.zeros(shape=[32, 784], dtype='float32')
|
|
|
|
|
label = np.ones(shape=[32, 1], dtype='int64')
|
|
|
|
|
self.check_network_convergence(
|
|
|
|
|
fc_with_batchnorm, feed_dict={"image": img,
|
|
|
|
|
"label": label})
|
|
|
|
@ -404,9 +404,6 @@ class ModelHyperParams(object):
|
|
|
|
|
dropout = 0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head):
|
|
|
|
|
"""
|
|
|
|
|
Pad the instances to the max sequence length in batch, and generate the
|
|
|
|
@ -533,9 +530,8 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
|
|
|
|
|
opt.minimize(loss)
|
|
|
|
|
|
|
|
|
|
batch_size = 32
|
|
|
|
|
image = numpy.random.normal(size=(batch_size,
|
|
|
|
|
784)).astype('float32')
|
|
|
|
|
label = numpy.random.randint(0, 10, (batch_size, 1), dtype="int64")
|
|
|
|
|
image = np.random.normal(size=(batch_size, 784)).astype('float32')
|
|
|
|
|
label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")
|
|
|
|
|
|
|
|
|
|
place = fluid.CUDAPlace(0)
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
@ -552,12 +548,12 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
for i in xrange(5):
|
|
|
|
|
test_loss, = test_exe.run([loss.name], feed=feed_dict)
|
|
|
|
|
test_loss = numpy.array(test_loss)
|
|
|
|
|
test_loss = np.array(test_loss)
|
|
|
|
|
|
|
|
|
|
train_loss, = train_exe.run([loss.name], feed=feed_dict)
|
|
|
|
|
train_loss = numpy.array(train_loss)
|
|
|
|
|
train_loss = np.array(train_loss)
|
|
|
|
|
self.assertTrue(
|
|
|
|
|
numpy.allclose(
|
|
|
|
|
np.allclose(
|
|
|
|
|
train_loss, test_loss, atol=1e-8),
|
|
|
|
|
"Train loss: " + str(train_loss) + "\n Test loss:" +
|
|
|
|
|
str(test_loss))
|
|
|
|
@ -712,7 +708,7 @@ class TestCRFModel(unittest.TestCase):
|
|
|
|
|
data = train_data()
|
|
|
|
|
for i in xrange(10):
|
|
|
|
|
cur_batch = next(data)
|
|
|
|
|
print map(numpy.array,
|
|
|
|
|
print map(np.array,
|
|
|
|
|
pe.run(feed=feeder.feed(cur_batch),
|
|
|
|
|
fetch_list=[avg_cost.name]))[0]
|
|
|
|
|
|
|
|
|
@ -721,3 +717,84 @@ class TestCRFModel(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
def test_update_dense_parameter(self):
|
|
|
|
|
self.check_network_convergence(is_sparse=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# test fetch all the variables of global_block
|
|
|
|
|
|
|
|
|
|
import paddle.dataset.flowers as flowers
|
|
|
|
|
import math
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def Lenet(data, class_dim):
|
|
|
|
|
conv1 = fluid.layers.conv2d(data, 32, 5, 1, act=None)
|
|
|
|
|
bn1 = fluid.layers.batch_norm(conv1, act='relu')
|
|
|
|
|
pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
|
|
|
|
|
conv2 = fluid.layers.conv2d(pool1, 50, 5, 1, act=None)
|
|
|
|
|
bn2 = fluid.layers.batch_norm(conv2, act='relu')
|
|
|
|
|
pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
|
|
|
|
|
|
|
|
|
|
fc1 = fluid.layers.fc(pool2, size=500, act='relu')
|
|
|
|
|
fc2 = fluid.layers.fc(fc1, size=class_dim, act='softmax')
|
|
|
|
|
|
|
|
|
|
return fc2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestFetchOp(unittest.TestCase):
|
|
|
|
|
def parallel_exe(self, train_inputs, seed):
|
|
|
|
|
main = fluid.Program()
|
|
|
|
|
startup = fluid.Program()
|
|
|
|
|
startup.random_seed = seed
|
|
|
|
|
with fluid.program_guard(main, startup):
|
|
|
|
|
data = fluid.layers.data(
|
|
|
|
|
name='image', shape=[3, 224, 224], dtype='float32')
|
|
|
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
|
out = Lenet(data, class_dim=102)
|
|
|
|
|
loss = fluid.layers.cross_entropy(input=out, label=label)
|
|
|
|
|
loss = fluid.layers.mean(loss)
|
|
|
|
|
|
|
|
|
|
opt = fluid.optimizer.Momentum(
|
|
|
|
|
learning_rate=0.1,
|
|
|
|
|
momentum=0.9,
|
|
|
|
|
regularization=fluid.regularizer.L2Decay(1e-4))
|
|
|
|
|
|
|
|
|
|
opt.minimize(loss)
|
|
|
|
|
|
|
|
|
|
# TODO(zcd): I found that onece the memory optimizer is open,
|
|
|
|
|
# parallel_exe doesn't fetch some variable, such as conv2d_0.b_0@GRAD,
|
|
|
|
|
# conv2d_1.b_0@GRAD. Those variables should not be pruned.
|
|
|
|
|
# fluid.memory_optimize(main)
|
|
|
|
|
|
|
|
|
|
place = fluid.CUDAPlace(0)
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
exe.run(startup)
|
|
|
|
|
|
|
|
|
|
feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
|
|
|
|
|
pe = fluid.ParallelExecutor(
|
|
|
|
|
use_cuda=True, loss_name=loss.name, main_program=main)
|
|
|
|
|
|
|
|
|
|
fetch_list = []
|
|
|
|
|
all_vars = main.global_block().vars
|
|
|
|
|
for k, v in all_vars.iteritems():
|
|
|
|
|
if 'tmp' not in k and k[0] is not '_' or v.persistable:
|
|
|
|
|
fetch_list.append(k)
|
|
|
|
|
|
|
|
|
|
for data in train_inputs:
|
|
|
|
|
ret = pe.run(fetch_list, feed=feeder.feed(data))
|
|
|
|
|
for i in range(len(fetch_list)):
|
|
|
|
|
assert not math.isnan(np.sum(ret[i])) and \
|
|
|
|
|
not math.isinf(np.sum(ret[i]))
|
|
|
|
|
|
|
|
|
|
def test_update_sparse_parameter(self):
|
|
|
|
|
tst_reader = paddle.batch(flowers.test(use_xmap=False), batch_size=16)
|
|
|
|
|
tst_reader_iter = tst_reader()
|
|
|
|
|
|
|
|
|
|
iters = 3
|
|
|
|
|
train_inputs = []
|
|
|
|
|
for i in range(iters):
|
|
|
|
|
train_inputs.append(tst_reader_iter.next())
|
|
|
|
|
|
|
|
|
|
self.parallel_exe(train_inputs, seed=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest.main()
|
|
|
|
|