parent
e19195f795
commit
9df84bd693
@ -0,0 +1,69 @@
|
||||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
|
||||
#include "paddle/fluid/operators/npu_op_runner.h"
|
||||
#include "paddle/fluid/operators/scale_op.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class ScaleNPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x = ctx.Input<framework::Tensor>("X");
|
||||
auto* out = ctx.Output<framework::Tensor>("Out");
|
||||
auto scale = static_cast<float>(ctx.Attr<float>("scale"));
|
||||
auto bias = static_cast<float>(ctx.Attr<float>("bias"));
|
||||
auto bias_after_scale = ctx.Attr<bool>("bias_after_scale");
|
||||
auto stream =
|
||||
ctx.template device_context<paddle::platform::NPUDeviceContext>()
|
||||
.stream();
|
||||
float _power = 1.0;
|
||||
if (bias_after_scale) {
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
auto runner =
|
||||
NpuOpRunner("Power", {*x}, {*out},
|
||||
{{"power", _power}, {"scale", scale}, {"shift", bias}});
|
||||
|
||||
runner.Run(stream);
|
||||
} else {
|
||||
Tensor tmp_x(x->type());
|
||||
tmp_x.Resize(x->dims());
|
||||
tmp_x.mutable_data<T>(ctx.GetPlace());
|
||||
auto runner_tmp = NpuOpRunner("Adds", {*x}, {tmp_x}, {{"value", bias}});
|
||||
runner_tmp.Run(stream);
|
||||
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
float _bias = 0.0;
|
||||
auto runner =
|
||||
NpuOpRunner("Power", {tmp_x}, {*out},
|
||||
{{"power", _power}, {"scale", scale}, {"shift", _bias}});
|
||||
runner.Run(stream);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_NPU_KERNEL(
|
||||
scale, ops::ScaleNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||
ops::ScaleNPUKernel<paddle::platform::NPUDeviceContext,
|
||||
paddle::platform::float16>);
|
||||
@ -0,0 +1,89 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
|
||||
paddle.enable_static()
|
||||
SEED = 2021
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestScale(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "scale"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
self.init_dtype()
|
||||
|
||||
self.inputs = {
|
||||
'X': OpTest.np_dtype_to_fluid_dtype(
|
||||
np.random.random((10, 10)).astype(self.dtype))
|
||||
}
|
||||
self.attrs = {'scale': -2.3, 'bias': 0, 'bias_after_scale': True}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'] * self.dtype(self.attrs['scale'])
|
||||
}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
|
||||
class TestFP16Scale(TestScale):
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float16
|
||||
|
||||
|
||||
class TestBiasAfterScale(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.op_type = "scale"
|
||||
self.place = paddle.NPUPlace(0)
|
||||
self.init_dtype()
|
||||
|
||||
self.inputs = {
|
||||
'X': OpTest.np_dtype_to_fluid_dtype(
|
||||
np.random.random((10, 10)).astype(self.dtype))
|
||||
}
|
||||
self.attrs = {'scale': -2.3, 'bias': 0, 'bias_after_scale': False}
|
||||
self.outputs = {
|
||||
'Out': self.inputs['X'] * self.dtype(self.attrs['scale'])
|
||||
}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
Loading…
Reference in new issue