|
|
|
@ -6,7 +6,6 @@ import paddle.v2.framework.optimizer as optimizer
|
|
|
|
|
from paddle.v2.framework.framework import Program, g_main_program
|
|
|
|
|
from paddle.v2.framework.io import save_persistables, load_persistables
|
|
|
|
|
from paddle.v2.framework.executor import Executor
|
|
|
|
|
from paddle.v2.framework.evaluator import Accuracy
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
@ -32,8 +31,6 @@ y = layers.data(
|
|
|
|
|
main_program=main_program,
|
|
|
|
|
startup_program=startup_program)
|
|
|
|
|
|
|
|
|
|
accuracy = evaluator.Accuracy(input=y_predict, label=y)
|
|
|
|
|
|
|
|
|
|
cost = layers.square_error_cost(
|
|
|
|
|
input=y_predict,
|
|
|
|
|
label=y,
|
|
|
|
@ -61,7 +58,6 @@ PASS_NUM = 100
|
|
|
|
|
for pass_id in range(PASS_NUM):
|
|
|
|
|
save_persistables(exe, "./fit_a_line.model/", main_program=main_program)
|
|
|
|
|
load_persistables(exe, "./fit_a_line.model/", main_program=main_program)
|
|
|
|
|
accuracy.reset(exe)
|
|
|
|
|
for data in train_reader():
|
|
|
|
|
x_data = np.array(map(lambda x: x[0], data)).astype("float32")
|
|
|
|
|
y_data = np.array(map(lambda x: x[1], data)).astype("float32")
|
|
|
|
@ -76,10 +72,8 @@ for pass_id in range(PASS_NUM):
|
|
|
|
|
outs = exe.run(main_program,
|
|
|
|
|
feed={'x': tensor_x,
|
|
|
|
|
'y': tensor_y},
|
|
|
|
|
fetch_list=[avg_cost, accuracy])
|
|
|
|
|
fetch_list=[avg_cost])
|
|
|
|
|
out = np.array(outs[0])
|
|
|
|
|
pass_acc = accuracy.eval(exe)
|
|
|
|
|
print pass_acc
|
|
|
|
|
|
|
|
|
|
if out[0] < 10.0:
|
|
|
|
|
exit(0) # if avg cost less than 10.0, we think our code is good.
|
|
|
|
|