Ascend Framework Part3: Ascend Parser (#30391)
parent
e207fe6385
commit
9fec1618d2
@ -0,0 +1,179 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle.fluid.framework as framework
|
||||
from paddle.fluid.optimizer import Optimizer
|
||||
import paddle.fluid.core as core
|
||||
import numpy as np
|
||||
import ascend_parser
|
||||
|
||||
|
||||
class AscendIRParser(object):
|
||||
def __init__(self):
|
||||
self.graph_idx = 0
|
||||
|
||||
def _construct_input_map(self, input_varlist):
|
||||
ret_map = {}
|
||||
ge_in_operator = []
|
||||
for id, var in enumerate(input_varlist):
|
||||
if var.is_data: # input data
|
||||
ge_input = core.GEOperatorFactory.create_operator(
|
||||
var.name, "Data").set_attr_int32("index", id)
|
||||
ret_map[var.name] = ge_input
|
||||
ge_in_operator.append(ge_input)
|
||||
else: # param, learning ...
|
||||
ge_input = core.GEOperatorFactory.create_operator(var.name,
|
||||
"Variable")
|
||||
ge_input.update_output_desc("y",
|
||||
core.GETensorDesc(
|
||||
core.GEShape(var.shape),
|
||||
core.GEFormat.FORMAT_ND,
|
||||
core.GEDataType.DT_FLOAT))
|
||||
ret_map[var.name] = ge_input
|
||||
return ge_in_operator, ret_map
|
||||
|
||||
def parse_op(self, op):
|
||||
if op.type in ascend_parser.registerd_op:
|
||||
print("Op[%s] has been registered, begin to parse it" % (op.type))
|
||||
op_parser = self.parser_factory.create_parse(
|
||||
ascend_parser.registerd_op[op.type])
|
||||
op_parser.apply(op)
|
||||
else:
|
||||
print("Op[%s] has not been registered, so we have to skip it" %
|
||||
(op.type))
|
||||
|
||||
def _parse_program(self,
|
||||
graph_name,
|
||||
program,
|
||||
input_varlist=[],
|
||||
fetch_list=[]):
|
||||
begin_graph_idx = self.graph_idx
|
||||
ge_in_operator = []
|
||||
ge_out_operator = []
|
||||
self.var2geop = {}
|
||||
|
||||
block = program.global_block()
|
||||
if len(block.ops) == 0:
|
||||
print("There is no ops in program %s" % (graph_name))
|
||||
return []
|
||||
|
||||
graph = core.GEGraph(graph_name)
|
||||
|
||||
ge_in_operator, self.var2geop = self._construct_input_map(input_varlist)
|
||||
|
||||
self.parser_factory = ascend_parser.AscendParserFactory(graph,
|
||||
self.var2geop)
|
||||
for i, curop in list(enumerate(block.ops)):
|
||||
self.parse_op(curop)
|
||||
|
||||
# Set fetch_var for GE
|
||||
for e in fetch_list:
|
||||
name = e
|
||||
if not isinstance(e, str):
|
||||
name = e.name
|
||||
ge_out_operator.append(self.var2geop[name])
|
||||
|
||||
# (Debug) If you want to print back prop vars, append/assign the varname in ge_out_operator here, such as:
|
||||
# if graph_name == "main":
|
||||
# ge_out_operator.append(self.var2geop["reduce_sum_0.tmp_0@GRAD"])
|
||||
|
||||
# Add ops that may be input of a graph, such as const.
|
||||
for varname, geop in self.var2geop.items():
|
||||
if varname.startswith("geinput"):
|
||||
ge_in_operator.append(geop)
|
||||
|
||||
graph.set_inputs(ge_in_operator).set_outputs(ge_out_operator)
|
||||
|
||||
# Remove ops of origin program
|
||||
op_num = len(block.ops)
|
||||
for i in range(op_num - 1, -1, -1):
|
||||
block._remove_op(i)
|
||||
|
||||
input_varlist = [var for var in input_varlist if var.is_data]
|
||||
|
||||
block.append_op(
|
||||
type="ascend_trigger",
|
||||
inputs={"FeedList": input_varlist},
|
||||
outputs={"FetchList": fetch_list},
|
||||
attrs={'graph_idx': self.graph_idx})
|
||||
self.graph_idx += 1
|
||||
return graph
|
||||
|
||||
def parse_program(self, startup_program, main_program, input_varlist,
|
||||
fetch_list):
|
||||
startup_graph = self._parse_program("startup", startup_program)
|
||||
main_graph = self._parse_program("main", main_program, input_varlist,
|
||||
fetch_list)
|
||||
return startup_graph, main_graph
|
||||
|
||||
|
||||
# AscendOptimizer is a wrapper for basic optimizer now
|
||||
# We will make it part of fleet meta_optimizer in the future
|
||||
class AscendOptimizer(Optimizer):
|
||||
def __init__(self, optimizer, fetch_list=[]):
|
||||
self.inner_opt = optimizer
|
||||
self.fetch_list = fetch_list
|
||||
|
||||
def __del__(self):
|
||||
core.ge_finalize()
|
||||
|
||||
def _can_apply(self):
|
||||
if not self.user_defined_strategy.ascend:
|
||||
return False
|
||||
# TODO(hutuxian): other check here
|
||||
return True
|
||||
|
||||
def _disable_strategy(self, dist_strategy):
|
||||
dist_strategy.ascend = False
|
||||
dist_strategy.ascend_configs = {}
|
||||
|
||||
def _get_input_varlist(program):
|
||||
ret_list = []
|
||||
for var in program.list_vars():
|
||||
if var.is_data or var.persistable:
|
||||
ret_list.append(var)
|
||||
return ret_list
|
||||
|
||||
def minimize(self,
|
||||
loss,
|
||||
startup_program=None,
|
||||
parameter_list=None,
|
||||
no_grad_set=None):
|
||||
minimized = self.inner_opt.minimize(
|
||||
loss, startup_program=startup_program)
|
||||
|
||||
self.ascend_instance = core.AscendInstance()
|
||||
|
||||
# Config about Graph Engine can be found in https://support.huaweicloud.com/
|
||||
config = {
|
||||
"ge.exec.deviceId": "0",
|
||||
"ge.graphRunMode": "1",
|
||||
"ge.exec.precision_mode": "must_keep_origin_dtype"
|
||||
}
|
||||
core.ge_initialize(config)
|
||||
|
||||
# Init Session
|
||||
self.ascend_instance.init_global_resources()
|
||||
|
||||
main_block = loss.block
|
||||
self.parser = AscendIRParser()
|
||||
|
||||
input_varlist = _get_input_varlist(main_block.program)
|
||||
startup_graph, main_graph = self.parser.parse_program(
|
||||
startup_program, main_block.program, input_varlist, self.fetch_list)
|
||||
|
||||
self.ascend_instance.add_ascend_subgraph(0, startup_graph)
|
||||
self.ascend_instance.add_ascend_subgraph(1, main_graph)
|
||||
|
||||
return minimized
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue