|
|
|
@ -3,30 +3,50 @@ import numpy as np
|
|
|
|
|
from op_test import OpTest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv2d_forward_naive(input, filter, group, conv_param):
|
|
|
|
|
in_n, in_c, in_h, in_w = input.shape
|
|
|
|
|
out_c, f_c, f_h, f_w = filter.shape
|
|
|
|
|
assert f_c * group == in_c
|
|
|
|
|
assert np.mod(out_c, group) == 0
|
|
|
|
|
sub_out_c = out_c / group
|
|
|
|
|
|
|
|
|
|
stride, pad = conv_param['stride'], conv_param['pad']
|
|
|
|
|
out_h = 1 + (in_h + 2 * pad - f_h) / stride
|
|
|
|
|
out_w = 1 + (in_w + 2 * pad - f_w) / stride
|
|
|
|
|
out = np.zeros((in_n, out_c, out_h, out_w))
|
|
|
|
|
|
|
|
|
|
input_pad = np.pad(input, ((0, ), (0, ), (pad, ), (pad, )),
|
|
|
|
|
mode='constant',
|
|
|
|
|
constant_values=0)
|
|
|
|
|
for i in range(out_h):
|
|
|
|
|
for j in range(out_w):
|
|
|
|
|
for g in range(group):
|
|
|
|
|
input_pad_masked = input_pad[:, g * f_c:(
|
|
|
|
|
g + 1) * f_c, i * stride:i * stride + f_h, j * stride:j *
|
|
|
|
|
stride + f_w]
|
|
|
|
|
f_sub = filter[g * sub_out_c:(g + 1) * sub_out_c, :, :, :]
|
|
|
|
|
for k in range(sub_out_c):
|
|
|
|
|
out[:, g * sub_out_c + k, i, j] = np.sum(input_pad_masked *
|
|
|
|
|
f_sub[k, :, :, :],
|
|
|
|
|
axis=(1, 2, 3))
|
|
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestConv2dOp(OpTest):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.init_groups()
|
|
|
|
|
self.op_type = "conv2d"
|
|
|
|
|
batch_size = 2
|
|
|
|
|
input_channels = 3
|
|
|
|
|
input_height = 5
|
|
|
|
|
input_width = 5
|
|
|
|
|
output_channels = 6
|
|
|
|
|
filter_height = 3
|
|
|
|
|
filter_width = 3
|
|
|
|
|
stride = 1
|
|
|
|
|
padding = 0
|
|
|
|
|
output_height = (input_height - filter_height + 2 * padding
|
|
|
|
|
) / stride + 1
|
|
|
|
|
output_width = (input_width - filter_width + 2 * padding) / stride + 1
|
|
|
|
|
input = np.random.random((batch_size, input_channels, input_height,
|
|
|
|
|
input_width)).astype("float32")
|
|
|
|
|
|
|
|
|
|
filter = np.random.random(
|
|
|
|
|
(output_channels, input_channels / self.groups, filter_height,
|
|
|
|
|
filter_width)).astype("float32")
|
|
|
|
|
output = np.ndarray(
|
|
|
|
|
(batch_size, output_channels, output_height, output_width))
|
|
|
|
|
input_size = [2, 3, 5, 5] # NCHW
|
|
|
|
|
assert np.mod(input_size[1], self.groups) == 0
|
|
|
|
|
f_c = input_size[1] / self.groups
|
|
|
|
|
filter_size = [6, f_c, 3, 3]
|
|
|
|
|
conv2d_param = {'stride': 1, 'pad': 0}
|
|
|
|
|
|
|
|
|
|
input = np.random.random(input_size).astype("float32")
|
|
|
|
|
filter = np.random.random(filter_size).astype("float32")
|
|
|
|
|
|
|
|
|
|
output = conv2d_forward_naive(input, filter, self.groups, conv2d_param)
|
|
|
|
|
|
|
|
|
|
self.inputs = {'Input': input, 'Filter': filter}
|
|
|
|
|
self.attrs = {
|
|
|
|
@ -34,39 +54,6 @@ class TestConv2dOp(OpTest):
|
|
|
|
|
'paddings': [0, 0],
|
|
|
|
|
'groups': self.groups
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
output_group_channels = output_channels / self.groups
|
|
|
|
|
input_group_channels = input_channels / self.groups
|
|
|
|
|
for batchid in xrange(batch_size):
|
|
|
|
|
for group in xrange(self.groups):
|
|
|
|
|
for outchannelid in range(group * output_group_channels,
|
|
|
|
|
(group + 1) * output_group_channels):
|
|
|
|
|
for rowid in xrange(output_height):
|
|
|
|
|
for colid in xrange(output_width):
|
|
|
|
|
start_h = (rowid * stride) - padding
|
|
|
|
|
start_w = (colid * stride) - padding
|
|
|
|
|
output_value = 0.0
|
|
|
|
|
for inchannelid in range(
|
|
|
|
|
group * input_group_channels,
|
|
|
|
|
(group + 1) * input_group_channels):
|
|
|
|
|
for frowid in xrange(filter_height):
|
|
|
|
|
for fcolid in xrange(filter_width):
|
|
|
|
|
input_value = 0.0
|
|
|
|
|
inrowid = start_h + frowid
|
|
|
|
|
incolid = start_w + fcolid
|
|
|
|
|
if ((inrowid >= 0 and
|
|
|
|
|
inrowid < input_height) and
|
|
|
|
|
(incolid >= 0 and
|
|
|
|
|
incolid < input_width)):
|
|
|
|
|
input_value = input[batchid][
|
|
|
|
|
inchannelid][inrowid][incolid]
|
|
|
|
|
filter_value = filter[outchannelid][
|
|
|
|
|
inchannelid % input_group_channels][
|
|
|
|
|
frowid][fcolid]
|
|
|
|
|
output_value += input_value * filter_value
|
|
|
|
|
output[batchid][outchannelid][rowid][
|
|
|
|
|
colid] = output_value
|
|
|
|
|
|
|
|
|
|
self.outputs = {'Output': output}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|