|
|
|
@ -18,6 +18,7 @@ import paddle.distributed.fleet as fleet
|
|
|
|
|
import paddle.distributed.fleet.base.role_maker as role_maker
|
|
|
|
|
import os
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -170,6 +171,44 @@ class TestFleetDygraph(unittest.TestCase):
|
|
|
|
|
final_strategy = fleet._final_strategy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LinearNet(nn.Layer):
|
|
|
|
|
def __init__(self):
|
|
|
|
|
super(LinearNet, self).__init__()
|
|
|
|
|
self._linear1 = nn.Linear(10, 10)
|
|
|
|
|
self._linear2 = nn.Linear(10, 1)
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
return self._linear2(self._linear1(x))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestFleetDygraphSingle(unittest.TestCase):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36213"
|
|
|
|
|
os.environ["PADDLE_CURRENT_ENDPOINTS"] = "127.0.0.1:36213"
|
|
|
|
|
os.environ["PADDLE_TRAINERS_NUM"] = "1"
|
|
|
|
|
os.environ["PADDLE_TRAINER_ID"] = "0"
|
|
|
|
|
|
|
|
|
|
def test_dygraph_single(self):
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
fleet.init(is_collective=True)
|
|
|
|
|
|
|
|
|
|
layer = LinearNet()
|
|
|
|
|
loss_fn = nn.MSELoss()
|
|
|
|
|
adam = paddle.optimizer.Adam(
|
|
|
|
|
learning_rate=0.001, parameters=layer.parameters())
|
|
|
|
|
|
|
|
|
|
adam = fleet.distributed_optimizer(adam)
|
|
|
|
|
dp_layer = fleet.distributed_model(layer)
|
|
|
|
|
for step in range(2):
|
|
|
|
|
inputs = paddle.randn([10, 10], 'float32')
|
|
|
|
|
outputs = dp_layer(inputs)
|
|
|
|
|
labels = paddle.randn([10, 1], 'float32')
|
|
|
|
|
loss = loss_fn(outputs, labels)
|
|
|
|
|
loss.backward()
|
|
|
|
|
adam.step()
|
|
|
|
|
adam.clear_grad()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestFleetBaseSingleRunCollective(unittest.TestCase):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
os.environ.pop("PADDLE_TRAINER_ENDPOINTS")
|
|
|
|
|