|
|
|
@ -126,14 +126,165 @@ public:
|
|
|
|
|
inputData += inputChannels * inputHeight * inputWidth;
|
|
|
|
|
outputData += outputChannels * outputHeight * outputWidth;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#ifdef PADDLE_MOBILE_INFERENCE
|
|
|
|
|
if (Device == DEVICE_TYPE_CPU) {
|
|
|
|
|
memory_.reset();
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* \brief Forward calculation of convolution, optimized for mobile.
|
|
|
|
|
*/
|
|
|
|
|
template <DeviceType Device>
|
|
|
|
|
class GemmConvMobileFunction : public ConvFunctionBase {
|
|
|
|
|
public:
|
|
|
|
|
void init(const FuncConfig& config) override {
|
|
|
|
|
ConvFunctionBase::init(config);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
|
|
|
const TensorShape& input = inputs[0].shape();
|
|
|
|
|
const TensorShape& filter = inputs[1].shape();
|
|
|
|
|
const TensorShape& output = outputs[0].shape();
|
|
|
|
|
checkShape(input, filter, output);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
|
|
|
CHECK_EQ(numInputs_, inputs.size());
|
|
|
|
|
CHECK_EQ(numOutputs_, outputs.size());
|
|
|
|
|
check(inputs, outputs);
|
|
|
|
|
// TODO(hedaoyuan): Need to define some index macros,
|
|
|
|
|
// to avoid useing 0 and 1.
|
|
|
|
|
const TensorShape& input = inputs[0].shape();
|
|
|
|
|
const TensorShape& filter = inputs[1].shape();
|
|
|
|
|
const TensorShape& output = outputs[0].shape();
|
|
|
|
|
|
|
|
|
|
real beta;
|
|
|
|
|
if (outputs[0].getArgType() == ADD_TO) {
|
|
|
|
|
beta = 1.0;
|
|
|
|
|
} else {
|
|
|
|
|
beta = 0.0;
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
size_t batchSize = input[0];
|
|
|
|
|
size_t inputChannels = input[1];
|
|
|
|
|
size_t inputHeight = input[2];
|
|
|
|
|
size_t inputWidth = input[3];
|
|
|
|
|
size_t filterHeight = getFilterHeight(filter);
|
|
|
|
|
size_t filterWidth = getFilterWidth(filter);
|
|
|
|
|
size_t outputChannels = output[1];
|
|
|
|
|
size_t outputHeight = output[2];
|
|
|
|
|
size_t outputWidth = output[3];
|
|
|
|
|
|
|
|
|
|
real* inputData = inputs[0].data<real>();
|
|
|
|
|
real* filterData = inputs[1].data<real>();
|
|
|
|
|
real* outputData = outputs[0].data<real>();
|
|
|
|
|
bool needIm2col = isNeedIm2col(filter);
|
|
|
|
|
|
|
|
|
|
TensorShape imShape =
|
|
|
|
|
TensorShape({inputChannels / groups_, inputHeight, inputWidth});
|
|
|
|
|
|
|
|
|
|
TensorShape colShape;
|
|
|
|
|
real* colData = NULL;
|
|
|
|
|
|
|
|
|
|
size_t colHeight = inputChannels / groups_ * filterHeight * filterWidth;
|
|
|
|
|
size_t colWidth = outputHeight * outputWidth;
|
|
|
|
|
// Max col matrix height 256, Max col matrix width 1024
|
|
|
|
|
size_t stepColHeight = std::min(colHeight, static_cast<size_t>(256));
|
|
|
|
|
size_t stepColWidth = std::min(colWidth, static_cast<size_t>(2048));
|
|
|
|
|
|
|
|
|
|
if (needIm2col) {
|
|
|
|
|
colShape = TensorShape({inputChannels / groups_,
|
|
|
|
|
filterHeight,
|
|
|
|
|
filterWidth,
|
|
|
|
|
outputHeight,
|
|
|
|
|
outputWidth});
|
|
|
|
|
|
|
|
|
|
resizeBuffer<Device>(stepColHeight * stepColWidth * sizeof(real));
|
|
|
|
|
colData = reinterpret_cast<real*>(memory_->getBuf());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
Im2ColMobileFunctor<real> im2col;
|
|
|
|
|
size_t inputOffset = imShape.getElements();
|
|
|
|
|
size_t outputOffset =
|
|
|
|
|
(outputChannels / groups_) * outputHeight * outputWidth;
|
|
|
|
|
size_t filterOffset = filter.getElements() / groups_;
|
|
|
|
|
|
|
|
|
|
int nStride = colWidth;
|
|
|
|
|
int kStride = colHeight;
|
|
|
|
|
for (size_t i = 0; i < batchSize; i++) {
|
|
|
|
|
for (size_t g = 0; g < groups_; g++) {
|
|
|
|
|
if (needIm2col) {
|
|
|
|
|
real beta_ = beta;
|
|
|
|
|
for (size_t colHeightStart = 0; colHeightStart < colHeight;
|
|
|
|
|
colHeightStart += stepColHeight) {
|
|
|
|
|
for (size_t colWidthStart = 0; colWidthStart < colWidth;
|
|
|
|
|
colWidthStart += stepColWidth) {
|
|
|
|
|
int N = std::min(colWidth - colWidthStart, stepColWidth);
|
|
|
|
|
int K = std::min(colHeight - colHeightStart, stepColHeight);
|
|
|
|
|
// im2col
|
|
|
|
|
im2col(inputData + g * inputOffset,
|
|
|
|
|
imShape,
|
|
|
|
|
colData,
|
|
|
|
|
colShape,
|
|
|
|
|
strideH(),
|
|
|
|
|
strideW(),
|
|
|
|
|
paddingH(),
|
|
|
|
|
paddingW(),
|
|
|
|
|
dilationH(),
|
|
|
|
|
dilationW(),
|
|
|
|
|
colHeightStart,
|
|
|
|
|
K,
|
|
|
|
|
colWidthStart,
|
|
|
|
|
N);
|
|
|
|
|
|
|
|
|
|
// gemm
|
|
|
|
|
int M = outputChannels / groups_;
|
|
|
|
|
BlasGemm<Device, real>::compute(
|
|
|
|
|
false,
|
|
|
|
|
false,
|
|
|
|
|
M,
|
|
|
|
|
N,
|
|
|
|
|
K,
|
|
|
|
|
1.0f,
|
|
|
|
|
filterData + g * filterOffset + colHeightStart,
|
|
|
|
|
kStride,
|
|
|
|
|
colData,
|
|
|
|
|
N,
|
|
|
|
|
beta_,
|
|
|
|
|
outputData + g * outputOffset + colWidthStart,
|
|
|
|
|
nStride);
|
|
|
|
|
}
|
|
|
|
|
beta_ = 1.0;
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
int M = outputChannels / groups_;
|
|
|
|
|
int N = outputHeight * outputWidth;
|
|
|
|
|
int K = inputChannels / groups_ * filterHeight * filterWidth;
|
|
|
|
|
BlasGemm<Device, real>::compute(false,
|
|
|
|
|
false,
|
|
|
|
|
M,
|
|
|
|
|
N,
|
|
|
|
|
K,
|
|
|
|
|
1.0f,
|
|
|
|
|
filterData + g * filterOffset,
|
|
|
|
|
K,
|
|
|
|
|
inputData + g * inputOffset,
|
|
|
|
|
N,
|
|
|
|
|
beta,
|
|
|
|
|
outputData + g * outputOffset,
|
|
|
|
|
N);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
inputData += inputChannels * inputHeight * inputWidth;
|
|
|
|
|
outputData += outputChannels * outputHeight * outputWidth;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
memory_.reset();
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
* \brief Backward input calculation of convolution.
|
|
|
|
|
*/
|
|
|
|
@ -348,7 +499,11 @@ public:
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#ifdef PADDLE_MOBILE_INFERENCE
|
|
|
|
|
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvMobileFunction);
|
|
|
|
|
#else
|
|
|
|
|
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction);
|
|
|
|
|
#endif
|
|
|
|
|
REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction);
|
|
|
|
|
REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction);
|
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
|