Merge pull request #219 from qingqing01/benchmark_cfg_doc
Benchmark including PaddlePaddle, TensorFlow and Caffe.avx_docs
commit
a0a87ac09a
@ -0,0 +1,9 @@
|
||||
paddle/image/logs
|
||||
paddle/image/*.pyc
|
||||
paddle/image/train.list
|
||||
paddle/rnn/logs
|
||||
paddle/rnn/*.pyc
|
||||
paddle/rnn/imdb.pkl
|
||||
caffe/image/logs
|
||||
tensorflow/image/logs
|
||||
tensorflow/rnn/logs
|
@ -0,0 +1,168 @@
|
||||
# Benchmark
|
||||
|
||||
Machine:
|
||||
|
||||
- CPU: 12-core Intel(R) Xeon(R) CPU E5-2620 v2 @2.10GHz
|
||||
- GPU: Tesla K40m
|
||||
- cuDNN: v5.1
|
||||
- system: Docker 1.12.1, all platforms are tested in docker environment.
|
||||
|
||||
Platforms:
|
||||
|
||||
- PaddlePaddle: paddledev/paddle:gpu-devel-v0.9.0a0
|
||||
- Tensorflow: gcr.io/tensorflow/tensorflow:0.11.0rc0-gpu
|
||||
- Caffe: kaixhin/cuda-caffe
|
||||
|
||||
Several convolutional neural networks and recurrent neural networks are used to test.
|
||||
|
||||
## Image
|
||||
|
||||
### Benchmark Model
|
||||
|
||||
AlexNet, GoogleNet and a small network used in Caffe.
|
||||
|
||||
- [AlexNet](https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet): but the group size is one.
|
||||
|
||||
- [GoogleNet](https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet): but remove loss1 and loss2 when testing benchmark.
|
||||
|
||||
- [SmallNet](https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10\_quick\_train\_test.prototxt)
|
||||
|
||||
|
||||
### Single-GPU
|
||||
|
||||
- AlexNet: input - 3 * 227 * 227, Time: ms/batch
|
||||
|
||||
| BatchSize | 64 | 128 | 256 | 512 |
|
||||
|--------------|-----| -----| ------| -----|
|
||||
| PaddlePaddle | 195 | 334 | 602 | 1629 |
|
||||
| TensorFlow | 223 | 364 | 645 | 1235 |
|
||||
| Caffe | 324 | 627 | 1232 | 2513 |
|
||||
|
||||
**Notation**
|
||||
|
||||
All platforms use cuDNN-v5.1. We see that caffe is slower in this experiment, because its workspace limit size of cuDNN-conv interface is 8 * 1024 * 1024, which is smaller in PaddlePaddle and TensorFlow. Note that Caffe will be faster if increasing the workspace limit size.
|
||||
|
||||
- GoogletNet: input - 3 * 224 * 224, Time: ms/batch
|
||||
|
||||
|
||||
| BatchSize | 64 | 128 | 256 |
|
||||
|--------------|-------| -------| --------|
|
||||
| PaddlePaddle | 613 | 1149 | 2348 |
|
||||
| TensorFlow | 644 | 1176 | 2219 |
|
||||
| Caffe | 694 | 1364 | out of memory |
|
||||
|
||||
- SmallNet: input - 3 * 32 * 32, Time ms/batch
|
||||
|
||||
| BatchSize | 64 | 128 | 256 | 512 |
|
||||
|--------------|--------| -------- | --------|---------|
|
||||
| PaddlePaddle | 10.463 | 18.184 | 33.113 | 63.039 |
|
||||
| TensorFlow | 9 | 15 | 28 | 59 |
|
||||
| Caffe | 9.373 | 16.6606 | 31.4797 | 59.719 |
|
||||
|
||||
**Notation**
|
||||
|
||||
All the single-GPU experiments in caffe use `caffe time` to calculate elapsed time, which does not include parameter updating time. However, both PaddlePaddle and TensorFlow experiments contain the parameter updating time. As compared with the total time, this part is relatively little on single machine, we can ignore it.
|
||||
|
||||
In Tensorflow, they implement algorithm searching method instead of using the algorithm searching interface in cuDNN.
|
||||
|
||||
### Multi-GPU: 4 GPUs
|
||||
|
||||
- AlexNet, ms / batch
|
||||
|
||||
| total-BatchSize | 128 * 4 | 256 * 4 |
|
||||
|------------------|----------| -----------|
|
||||
| PaddlePaddle | 347 | 622 |
|
||||
| TensorFlow | 377 | 675 |
|
||||
| Caffe | 1229 | 2435 |
|
||||
|
||||
For example, if `total-BatchSize = 128 * 4`, the speedup ratio is calculated by
|
||||
|
||||
```
|
||||
time_at_1gpu_batch_128 * 4 / time_at_4gpu_total_batch_512
|
||||
= (334 * 4)/347
|
||||
= 3.85
|
||||
```
|
||||
|
||||
<img src="figs/alexnet-4gpu.png" width="420">
|
||||
|
||||
|
||||
- GoogleNet, ms / batch
|
||||
|
||||
| total-BatchSize | 128 * 4 | 256 * 4 |
|
||||
|-------------------|--------------| ----------- |
|
||||
| PaddlePaddle | 1178 | 2367 |
|
||||
| TensorFlow | 1210 | 2292 |
|
||||
| Caffe | 2007 | out of memory |
|
||||
|
||||
<img src="figs/googlenet-4gpu.png" width="420">
|
||||
|
||||
|
||||
## RNN
|
||||
We use lstm network for text classfication to test benchmark.
|
||||
|
||||
### Dataset
|
||||
- [IMDB](http://www.iro.umontreal.ca/~lisa/deep/data/imdb.pkl)
|
||||
- Sequence length is 100. In fact, PaddlePaddle supports training with variable-length sequence, but TensorFlow needs to pad. Thus, we also pad sequence length to 100 in PaddlePaddle in order to compare.
|
||||
- Dictionary size=30000
|
||||
- Peephole connection is used in `lstmemory` by default in PaddlePaddle. It is also configured in TensorFlow.
|
||||
|
||||
### Single-GPU
|
||||
|
||||
#### LSTM in Text Classification
|
||||
|
||||
Testing `2 lstm layer + fc` network with different hidden size and batch size.
|
||||
|
||||
- Batch size = 64, ms / batch
|
||||
|
||||
| hidden_size | 256 | 512 | 1280 |
|
||||
|--------------|-------| -------| --------|
|
||||
| PaddlePaddle | 83 | 184 | 641 |
|
||||
| TensorFlow | 175 | 280 | 818 |
|
||||
|
||||
- Batch size = 128, ms / batch
|
||||
|
||||
| hidden_size | 256 | 512 | 1280 |
|
||||
|--------------|------- | -------| --------|
|
||||
| PaddlePaddle | 110 | 261 | 1007 |
|
||||
| TensorFlow | 181 | 361 | 1237 |
|
||||
|
||||
|
||||
- Batch size = 256, ms / batch
|
||||
|
||||
| hidden_size | 256 | 512 | 1280 |
|
||||
|--------------|-------| -------| --------|
|
||||
| PaddlePaddle | 170 | 414 | 1655 |
|
||||
| TensorFlow | 238 | 536 | 1905 |
|
||||
|
||||
<img src="figs/rnn_lstm_cls.png" width="600">
|
||||
|
||||
#### Seq2Seq
|
||||
|
||||
The benchmark of sequence-to-sequence network will be added later.
|
||||
|
||||
|
||||
### Multi GPU: 4 GPUs
|
||||
|
||||
#### LSTM in Text Classification
|
||||
|
||||
- hidden_size = 256, ms / batch
|
||||
|
||||
| batch_size | 256 | 512 |
|
||||
|--------------| -------| --------|
|
||||
| PaddlePaddle | 90 | 118 |
|
||||
| TensorFlow | 226 | 118 |
|
||||
|
||||
|
||||
- hidden_size = 512, ms / batch
|
||||
|
||||
| batch_size | 256 | 512 |
|
||||
|--------------| -------| --------|
|
||||
| PaddlePaddle | 189 | 268 |
|
||||
| TensorFlow | 297 | 383 |
|
||||
|
||||
|
||||
<img src="figs/rnn_lstm_4gpus.png" width="420">
|
||||
|
||||
#### Seq2Seq
|
||||
|
||||
The benchmark of sequence-to-sequence network will be added later.
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,30 @@
|
||||
set -e
|
||||
|
||||
function test() {
|
||||
cfg=$1
|
||||
batch=$2
|
||||
prefix=$3
|
||||
sed -i "/input: \"data\"/{n;s/^input_dim.*/input_dim: $batch/g}" $cfg
|
||||
sed -i "/input: \"label\"/{n;s/^input_dim.*/input_dim: $batch/g}" $cfg
|
||||
caffe time --model=$cfg --iterations=50 --gpu 0 > logs/$prefix-1gpu-batch${batch}.log 2>&1
|
||||
}
|
||||
|
||||
if [ ! -d "logs" ]; then
|
||||
mkdir logs
|
||||
fi
|
||||
|
||||
# alexnet
|
||||
test alexnet.prototxt 64 alexnet
|
||||
test alexnet.prototxt 128 alexnet
|
||||
test alexnet.prototxt 256 alexnet
|
||||
test alexnet.prototxt 512 alexnet
|
||||
|
||||
# googlenet
|
||||
test googlenet.prototxt 64 googlenet
|
||||
test googlenet.prototxt 128 googlenet
|
||||
|
||||
# small net
|
||||
test smallnet_mnist_cifar.prototxt 64 smallnet
|
||||
test smallnet_mnist_cifar.prototxt 128 smallnet
|
||||
test smallnet_mnist_cifar.prototxt 256 smallnet
|
||||
test smallnet_mnist_cifar.prototxt 512 smallnet
|
@ -0,0 +1,24 @@
|
||||
#!/bin/bash
|
||||
set -e
|
||||
|
||||
function test() {
|
||||
cfg=$1
|
||||
batch=$2
|
||||
prefix=$3
|
||||
batch_per_gpu=`expr ${batch} / 4`
|
||||
sed -i "/input: \"data\"/{n;s/^input_dim.*/input_dim: ${batch_per_gpu}/g}" $cfg
|
||||
sed -i "/input: \"label\"/{n;s/^input_dim.*/input_dim: ${batch_per_gpu}/g}" $cfg
|
||||
sed -i "1c\net : \"${cfg}\"" solver.prototxt
|
||||
caffe train --solver=solver.prototxt -gpu 0,1,2,3 > logs/${prefix}-4gpu-batch${batch}.log 2>&1
|
||||
}
|
||||
|
||||
if [ ! -d "logs" ]; then
|
||||
mkdir logs
|
||||
fi
|
||||
|
||||
# alexnet
|
||||
test alexnet.prototxt 512 alexnet
|
||||
test alexnet.prototxt 1024 alexnet
|
||||
|
||||
# googlnet
|
||||
test googlenet.prototxt 512 googlenet
|
@ -0,0 +1,198 @@
|
||||
name: "mnist/cifar"
|
||||
input: "data"
|
||||
input_dim: 128
|
||||
input_dim: 3
|
||||
input_dim: 32
|
||||
input_dim: 32
|
||||
input: "label"
|
||||
input_dim: 128
|
||||
input_dim: 1
|
||||
input_dim: 1
|
||||
input_dim: 1
|
||||
layer {
|
||||
name: "conv1"
|
||||
type: "Convolution"
|
||||
bottom: "data"
|
||||
top: "conv1"
|
||||
param {
|
||||
lr_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 32
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
stride: 1
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.0001
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "pool1"
|
||||
type: "Pooling"
|
||||
bottom: "conv1"
|
||||
top: "pool1"
|
||||
pooling_param {
|
||||
pool: MAX
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu1"
|
||||
type: "ReLU"
|
||||
bottom: "pool1"
|
||||
top: "pool1"
|
||||
}
|
||||
layer {
|
||||
name: "conv2"
|
||||
type: "Convolution"
|
||||
bottom: "pool1"
|
||||
top: "conv2"
|
||||
param {
|
||||
lr_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 32
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
stride: 1
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu2"
|
||||
type: "ReLU"
|
||||
bottom: "conv2"
|
||||
top: "conv2"
|
||||
}
|
||||
layer {
|
||||
name: "pool2"
|
||||
type: "Pooling"
|
||||
bottom: "conv2"
|
||||
top: "pool2"
|
||||
pooling_param {
|
||||
pool: AVE
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "conv3"
|
||||
type: "Convolution"
|
||||
bottom: "pool2"
|
||||
top: "conv3"
|
||||
param {
|
||||
lr_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
}
|
||||
convolution_param {
|
||||
num_output: 64
|
||||
pad: 2
|
||||
kernel_size: 5
|
||||
stride: 1
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.01
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "relu3"
|
||||
type: "ReLU"
|
||||
bottom: "conv3"
|
||||
top: "conv3"
|
||||
}
|
||||
layer {
|
||||
name: "pool3"
|
||||
type: "Pooling"
|
||||
bottom: "conv3"
|
||||
top: "pool3"
|
||||
pooling_param {
|
||||
pool: AVE
|
||||
kernel_size: 3
|
||||
stride: 2
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "ip1"
|
||||
type: "InnerProduct"
|
||||
bottom: "pool3"
|
||||
top: "ip1"
|
||||
param {
|
||||
lr_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 64
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.1
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "ip2"
|
||||
type: "InnerProduct"
|
||||
bottom: "ip1"
|
||||
top: "ip2"
|
||||
param {
|
||||
lr_mult: 1
|
||||
}
|
||||
param {
|
||||
lr_mult: 2
|
||||
}
|
||||
inner_product_param {
|
||||
num_output: 10
|
||||
weight_filler {
|
||||
type: "gaussian"
|
||||
std: 0.1
|
||||
}
|
||||
bias_filler {
|
||||
type: "constant"
|
||||
}
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "accuracy"
|
||||
type: "Accuracy"
|
||||
bottom: "ip2"
|
||||
bottom: "label"
|
||||
top: "accuracy"
|
||||
include {
|
||||
phase: TEST
|
||||
}
|
||||
}
|
||||
layer {
|
||||
name: "loss"
|
||||
type: "SoftmaxWithLoss"
|
||||
bottom: "ip2"
|
||||
bottom: "label"
|
||||
top: "loss"
|
||||
}
|
@ -0,0 +1,10 @@
|
||||
net: "alexnet.prototxt"
|
||||
base_lr: 0.01
|
||||
lr_policy: "fixed"
|
||||
display: 20
|
||||
max_iter: 200
|
||||
momentum: 0.9
|
||||
weight_decay: 0.0005
|
||||
snapshot: 10000
|
||||
snapshot_prefix: "models/caffe_alexnet_train"
|
||||
solver_mode: GPU
|
After Width: | Height: | Size: 82 KiB |
After Width: | Height: | Size: 82 KiB |
After Width: | Height: | Size: 72 KiB |
After Width: | Height: | Size: 115 KiB |
@ -0,0 +1,64 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
height = 227
|
||||
width = 227
|
||||
num_class = 1000
|
||||
batch_size = get_config_arg('batch_size', int, 128)
|
||||
|
||||
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
|
||||
define_py_data_sources2(
|
||||
"train.list", None, module="provider", obj="process", args=args)
|
||||
|
||||
settings(
|
||||
batch_size=batch_size,
|
||||
learning_rate=0.01 / batch_size,
|
||||
learning_method=MomentumOptimizer(0.9),
|
||||
regularization=L2Regularization(0.0005 * batch_size))
|
||||
|
||||
# conv1
|
||||
net = data_layer('data', size=height * width * 3)
|
||||
net = img_conv_layer(
|
||||
input=net,
|
||||
filter_size=11,
|
||||
num_channels=3,
|
||||
num_filters=96,
|
||||
stride=4,
|
||||
padding=1)
|
||||
net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
|
||||
net = img_pool_layer(input=net, pool_size=3, stride=2)
|
||||
|
||||
# conv2
|
||||
net = img_conv_layer(
|
||||
input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=1)
|
||||
net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
|
||||
net = img_pool_layer(input=net, pool_size=3, stride=2)
|
||||
|
||||
# conv3
|
||||
net = img_conv_layer(
|
||||
input=net, filter_size=3, num_filters=384, stride=1, padding=1)
|
||||
# conv4
|
||||
net = img_conv_layer(
|
||||
input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=1)
|
||||
|
||||
# conv5
|
||||
net = img_conv_layer(
|
||||
input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=1)
|
||||
net = img_pool_layer(input=net, pool_size=3, stride=2)
|
||||
|
||||
net = fc_layer(
|
||||
input=net,
|
||||
size=4096,
|
||||
act=ReluActivation(),
|
||||
layer_attr=ExtraAttr(drop_rate=0.5))
|
||||
net = fc_layer(
|
||||
input=net,
|
||||
size=4096,
|
||||
act=ReluActivation(),
|
||||
layer_attr=ExtraAttr(drop_rate=0.5))
|
||||
net = fc_layer(input=net, size=1000, act=SoftmaxActivation())
|
||||
|
||||
lab = data_layer('label', num_class)
|
||||
loss = cross_entropy(input=net, label=lab)
|
||||
outputs(loss)
|
@ -0,0 +1,226 @@
|
||||
#!/usr/bin/env python
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
height = 224
|
||||
width = 224
|
||||
num_class = 1000
|
||||
batch_size = get_config_arg('batch_size', int, 128)
|
||||
|
||||
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
|
||||
define_py_data_sources2(
|
||||
"train.list", None, module="provider", obj="process", args=args)
|
||||
|
||||
settings(
|
||||
batch_size=batch_size,
|
||||
learning_rate=0.01 / batch_size,
|
||||
learning_method=MomentumOptimizer(0.9),
|
||||
regularization=L2Regularization(0.0005 * batch_size))
|
||||
|
||||
def inception2(name, input, channels, \
|
||||
filter1,
|
||||
filter3R, filter3,
|
||||
filter5R, filter5,
|
||||
proj):
|
||||
|
||||
conv1 = name + '_1'
|
||||
conv3r = name + '_3r'
|
||||
conv3 = name + '_3'
|
||||
conv5r = name + '_5r'
|
||||
conv5 = name + '_5'
|
||||
maxpool = name + '_max'
|
||||
convproj = name + '_proj'
|
||||
|
||||
cov1 = img_conv_layer(
|
||||
name=conv1,
|
||||
input=input,
|
||||
filter_size=1,
|
||||
num_channels=channels,
|
||||
num_filters=filter1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
cov3r = img_conv_layer(
|
||||
name=conv3r,
|
||||
input=input,
|
||||
filter_size=1,
|
||||
num_channels=channels,
|
||||
num_filters=filter3R,
|
||||
stride=1,
|
||||
padding=0)
|
||||
cov3 = img_conv_layer(
|
||||
name=conv3,
|
||||
input=cov3r,
|
||||
filter_size=3,
|
||||
num_filters=filter3,
|
||||
stride=1,
|
||||
padding=1)
|
||||
|
||||
cov5r = img_conv_layer(
|
||||
name=conv5r,
|
||||
input=input,
|
||||
filter_size=1,
|
||||
num_channels=channels,
|
||||
num_filters=filter5R,
|
||||
stride=1,
|
||||
padding=0)
|
||||
cov5 = img_conv_layer(
|
||||
name=conv5,
|
||||
input=cov5r,
|
||||
filter_size=5,
|
||||
num_filters=filter5,
|
||||
stride=1,
|
||||
padding=2)
|
||||
|
||||
pool1 = img_pool_layer(
|
||||
name=maxpool,
|
||||
input=input,
|
||||
pool_size=3,
|
||||
num_channels=channels,
|
||||
stride=1,
|
||||
padding=1)
|
||||
covprj = img_conv_layer(
|
||||
name=convproj,
|
||||
input=pool1,
|
||||
filter_size=1,
|
||||
num_filters=proj,
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
cat = concat_layer(name=name, input=[cov1, cov3, cov5, covprj])
|
||||
return cat
|
||||
|
||||
def inception(name, input, channels, \
|
||||
filter1,
|
||||
filter3R, filter3,
|
||||
filter5R, filter5,
|
||||
proj):
|
||||
|
||||
cov1 = conv_projection(
|
||||
input=input,
|
||||
filter_size=1,
|
||||
num_channels=channels,
|
||||
num_filters=filter1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
|
||||
cov3r = img_conv_layer(
|
||||
name=name + '_3r',
|
||||
input=input,
|
||||
filter_size=1,
|
||||
num_channels=channels,
|
||||
num_filters=filter3R,
|
||||
stride=1,
|
||||
padding=0)
|
||||
cov3 = conv_projection(
|
||||
input=cov3r, filter_size=3, num_filters=filter3, stride=1, padding=1)
|
||||
|
||||
cov5r = img_conv_layer(
|
||||
name=name + '_5r',
|
||||
input=input,
|
||||
filter_size=1,
|
||||
num_channels=channels,
|
||||
num_filters=filter5R,
|
||||
stride=1,
|
||||
padding=0)
|
||||
cov5 = conv_projection(
|
||||
input=cov5r, filter_size=5, num_filters=filter5, stride=1, padding=2)
|
||||
|
||||
pool1 = img_pool_layer(
|
||||
name=name + '_max',
|
||||
input=input,
|
||||
pool_size=3,
|
||||
num_channels=channels,
|
||||
stride=1,
|
||||
padding=1)
|
||||
covprj = conv_projection(
|
||||
input=pool1, filter_size=1, num_filters=proj, stride=1, padding=0)
|
||||
|
||||
cat = concat_layer(
|
||||
name=name,
|
||||
input=[cov1, cov3, cov5, covprj],
|
||||
bias_attr=True,
|
||||
act=ReluActivation())
|
||||
return cat
|
||||
|
||||
|
||||
lab = data_layer(name="label", size=1000)
|
||||
data = data_layer(name="input", size=3 * height * width)
|
||||
|
||||
# stage 1
|
||||
conv1 = img_conv_layer(
|
||||
name="conv1",
|
||||
input=data,
|
||||
filter_size=7,
|
||||
num_channels=3,
|
||||
num_filters=64,
|
||||
stride=2,
|
||||
padding=3)
|
||||
pool1 = img_pool_layer(
|
||||
name="pool1", input=conv1, pool_size=3, num_channels=64, stride=2)
|
||||
|
||||
# stage 2
|
||||
conv2_1 = img_conv_layer(
|
||||
name="conv2_1",
|
||||
input=pool1,
|
||||
filter_size=1,
|
||||
num_filters=64,
|
||||
stride=1,
|
||||
padding=0)
|
||||
conv2_2 = img_conv_layer(
|
||||
name="conv2_2",
|
||||
input=conv2_1,
|
||||
filter_size=3,
|
||||
num_filters=192,
|
||||
stride=1,
|
||||
padding=1)
|
||||
pool2 = img_pool_layer(
|
||||
name="pool2", input=conv2_2, pool_size=3, num_channels=192, stride=2)
|
||||
|
||||
# stage 3
|
||||
ince3a = inception("ince3a", pool2, 192, 64, 96, 128, 16, 32, 32)
|
||||
ince3b = inception("ince3b", ince3a, 256, 128, 128, 192, 32, 96, 64)
|
||||
pool3 = img_pool_layer(
|
||||
name="pool3", input=ince3b, num_channels=480, pool_size=3, stride=2)
|
||||
|
||||
# stage 4
|
||||
ince4a = inception("ince4a", pool3, 480, 192, 96, 208, 16, 48, 64)
|
||||
ince4b = inception("ince4b", ince4a, 512, 160, 112, 224, 24, 64, 64)
|
||||
ince4c = inception("ince4c", ince4b, 512, 128, 128, 256, 24, 64, 64)
|
||||
ince4d = inception("ince4d", ince4c, 512, 112, 144, 288, 32, 64, 64)
|
||||
ince4e = inception("ince4e", ince4d, 528, 256, 160, 320, 32, 128, 128)
|
||||
pool4 = img_pool_layer(
|
||||
name="pool4", input=ince4e, num_channels=832, pool_size=3, stride=2)
|
||||
|
||||
# stage 5
|
||||
ince5a = inception("ince5a", pool4, 832, 256, 160, 320, 32, 128, 128)
|
||||
ince5b = inception("ince5b", ince5a, 832, 384, 192, 384, 48, 128, 128)
|
||||
pool5 = img_pool_layer(
|
||||
name="pool5",
|
||||
input=ince5b,
|
||||
num_channels=1024,
|
||||
pool_size=7,
|
||||
stride=7,
|
||||
pool_type=AvgPooling())
|
||||
|
||||
# We remove loss1 and loss2 for all system when testing benchmark
|
||||
# output 1
|
||||
# pool_o1 = img_pool_layer(name="pool_o1", input=ince4a, num_channels=512, pool_size=5, stride=3, pool_type=AvgPooling())
|
||||
# conv_o1 = img_conv_layer(name="conv_o1", input=pool_o1, filter_size=1, num_filters=128, stride=1, padding=0)
|
||||
# fc_o1 = fc_layer(name="fc_o1", input=conv_o1, size=1024, layer_attr=ExtraAttr(drop_rate=0.7), act=ReluActivation())
|
||||
# out1 = fc_layer(name="output1", input=fc_o1, size=1000, act=SoftmaxActivation())
|
||||
# loss1 = cross_entropy(name='loss1', input=out1, label=lab, coeff=0.3)
|
||||
|
||||
# output 2
|
||||
#pool_o2 = img_pool_layer(name="pool_o2", input=ince4d, num_channels=528, pool_size=5, stride=3, pool_type=AvgPooling())
|
||||
#conv_o2 = img_conv_layer(name="conv_o2", input=pool_o2, filter_size=1, num_filters=128, stride=1, padding=0)
|
||||
#fc_o2 = fc_layer(name="fc_o2", input=conv_o2, size=1024, layer_attr=ExtraAttr(drop_rate=0.7), act=ReluActivation())
|
||||
#out2 = fc_layer(name="output2", input=fc_o2, size=1000, act=SoftmaxActivation())
|
||||
#loss2 = cross_entropy(name='loss2', input=out2, label=lab, coeff=0.3)
|
||||
|
||||
# output 3
|
||||
dropout = dropout_layer(name="dropout", input=pool5, dropout_rate=0.4)
|
||||
out3 = fc_layer(
|
||||
name="output3", input=dropout, size=1000, act=SoftmaxActivation())
|
||||
loss3 = cross_entropy(name='loss3', input=out3, label=lab)
|
||||
|
||||
outputs(loss3)
|
@ -0,0 +1,26 @@
|
||||
import io, os
|
||||
import random
|
||||
import numpy as np
|
||||
from paddle.trainer.PyDataProvider2 import *
|
||||
|
||||
|
||||
def initHook(settings, height, width, color, num_class, **kwargs):
|
||||
settings.height = height
|
||||
settings.width = width
|
||||
settings.color = color
|
||||
settings.num_class = num_class
|
||||
if settings.color:
|
||||
settings.data_size = settings.height * settings.width * 3
|
||||
else:
|
||||
settings.data_size = settings.height * settings.width
|
||||
|
||||
settings.slots = [dense_vector(settings.data_size), integer_value(1)]
|
||||
|
||||
|
||||
@provider(
|
||||
init_hook=initHook, min_pool_size=-1, cache=CacheType.CACHE_PASS_IN_MEM)
|
||||
def process(settings, file_list):
|
||||
for i in xrange(1024):
|
||||
img = np.random.rand(1, settings.data_size).reshape(-1, 1).flatten()
|
||||
lab = random.randint(0, settings.num_class)
|
||||
yield img.astype('float32'), int(lab)
|
@ -0,0 +1,51 @@
|
||||
set -e
|
||||
|
||||
function train() {
|
||||
cfg=$1
|
||||
thread=$2
|
||||
bz=$3
|
||||
args="batch_size=$3"
|
||||
prefix=$4
|
||||
paddle train --job=time \
|
||||
--config=$cfg \
|
||||
--use_gpu=True \
|
||||
--trainer_count=$thread \
|
||||
--log_period=10 \
|
||||
--test_period=100 \
|
||||
--config_args=$args \
|
||||
> logs/$prefix-${thread}gpu-$bz.log 2>&1
|
||||
}
|
||||
|
||||
if [ ! -d "train.list" ]; then
|
||||
echo " " > train.list
|
||||
fi
|
||||
if [ ! -d "logs" ]; then
|
||||
mkdir logs
|
||||
fi
|
||||
|
||||
#========single-gpu=========#
|
||||
# alexnet
|
||||
train alexnet.py 1 64 alexnet
|
||||
train alexnet.py 1 128 alexnet
|
||||
train alexnet.py 1 256 alexnet
|
||||
train alexnet.py 1 512 alexnet
|
||||
|
||||
# googlenet
|
||||
train googlenet.py 1 64 googlenet
|
||||
train googlenet.py 1 128 googlenet
|
||||
train googlenet.py 1 256 googlenet
|
||||
|
||||
# smallnet
|
||||
train smallnet_mnist_cifar.py 1 64 smallnet
|
||||
train smallnet_mnist_cifar.py 1 128 smallnet
|
||||
train smallnet_mnist_cifar.py 1 256 smallnet
|
||||
train smallnet_mnist_cifar.py 1 512 smallnet
|
||||
|
||||
|
||||
############################
|
||||
#========multi-gpus=========#
|
||||
train alexnet.py 4 512 alexnet
|
||||
train alexnet.py 4 1024 alexnet
|
||||
|
||||
train googlenet.py 4 512 googlenet
|
||||
train googlenet.py 4 1024 googlenet
|
@ -0,0 +1,49 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
height = 32
|
||||
width = 32
|
||||
num_class = 10
|
||||
|
||||
batch_size = get_config_arg('batch_size', int, 128)
|
||||
|
||||
args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
|
||||
define_py_data_sources2(
|
||||
"train.list", None, module="provider", obj="process", args=args)
|
||||
|
||||
settings(
|
||||
batch_size=batch_size,
|
||||
learning_rate=0.01 / batch_size,
|
||||
learning_method=MomentumOptimizer(0.9),
|
||||
regularization=L2Regularization(0.0005 * batch_size))
|
||||
|
||||
# conv1
|
||||
net = data_layer('data', size=height * width * 3)
|
||||
net = img_conv_layer(
|
||||
input=net,
|
||||
filter_size=5,
|
||||
num_channels=3,
|
||||
num_filters=32,
|
||||
stride=1,
|
||||
padding=2)
|
||||
net = img_pool_layer(input=net, pool_size=3, stride=2, padding=1)
|
||||
|
||||
# conv2
|
||||
net = img_conv_layer(
|
||||
input=net, filter_size=5, num_filters=32, stride=1, padding=2)
|
||||
net = img_pool_layer(
|
||||
input=net, pool_size=3, stride=2, padding=1, pool_type=AvgPooling())
|
||||
|
||||
# conv3
|
||||
net = img_conv_layer(
|
||||
input=net, filter_size=3, num_filters=64, stride=1, padding=1)
|
||||
net = img_pool_layer(
|
||||
input=net, pool_size=3, stride=2, padding=1, pool_type=AvgPooling())
|
||||
|
||||
net = fc_layer(input=net, size=64, act=ReluActivation())
|
||||
net = fc_layer(input=net, size=10, act=SoftmaxActivation())
|
||||
|
||||
lab = data_layer('label', num_class)
|
||||
loss = classification_cost(input=net, label=lab)
|
||||
outputs(loss)
|
@ -0,0 +1,46 @@
|
||||
from __future__ import print_function
|
||||
import six.moves.cPickle as pickle
|
||||
import gzip
|
||||
import os
|
||||
import numpy
|
||||
|
||||
|
||||
def get_dataset_file(dataset, default_dataset, origin):
|
||||
data_dir, data_file = os.path.split(dataset)
|
||||
if (not os.path.isfile(dataset)) and data_file == default_dataset:
|
||||
from six.moves import urllib
|
||||
print('Downloading data from %s' % origin)
|
||||
urllib.request.urlretrieve(origin, dataset)
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
def create_data(path="imdb.pkl"):
|
||||
|
||||
if (not os.path.isfile('imdb.train.pkl')):
|
||||
path = get_dataset_file(
|
||||
path, "imdb.pkl",
|
||||
"http://www.iro.umontreal.ca/~lisa/deep/data/imdb.pkl")
|
||||
|
||||
if path.endswith(".gz"):
|
||||
f = gzip.open(path, 'rb')
|
||||
else:
|
||||
f = open(path, 'rb')
|
||||
|
||||
train_set = pickle.load(f)
|
||||
test_set = pickle.load(f)
|
||||
f.close()
|
||||
|
||||
pickle.dump(train_set, open('imdb.train.pkl', 'wb'))
|
||||
pickle.dump(test_set, open('imdb.test.pkl', 'wb'))
|
||||
|
||||
if (not os.path.isfile('train.list')):
|
||||
file('train.list', 'w').write('imdb.train.pkl\n')
|
||||
|
||||
|
||||
def main():
|
||||
create_data('imdb.pkl')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,72 @@
|
||||
import io, os
|
||||
import random
|
||||
import numpy as np
|
||||
import six.moves.cPickle as pickle
|
||||
from paddle.trainer.PyDataProvider2 import *
|
||||
|
||||
|
||||
def remove_unk(x, n_words):
|
||||
return [[1 if w >= n_words else w for w in sen] for sen in x]
|
||||
|
||||
|
||||
# ==============================================================
|
||||
# tensorflow uses fixed length, but PaddlePaddle can process
|
||||
# variable-length. Padding is used in benchmark in order to
|
||||
# compare with other platform.
|
||||
# ==============================================================
|
||||
def pad_sequences(sequences,
|
||||
maxlen=None,
|
||||
dtype='int32',
|
||||
padding='post',
|
||||
truncating='post',
|
||||
value=0.):
|
||||
lengths = [len(s) for s in sequences]
|
||||
|
||||
nb_samples = len(sequences)
|
||||
if maxlen is None:
|
||||
maxlen = np.max(lengths)
|
||||
|
||||
x = (np.ones((nb_samples, maxlen)) * value).astype(dtype)
|
||||
for idx, s in enumerate(sequences):
|
||||
if len(s) == 0:
|
||||
continue # empty list was found
|
||||
if truncating == 'pre':
|
||||
trunc = s[-maxlen:]
|
||||
elif truncating == 'post':
|
||||
trunc = s[:maxlen]
|
||||
else:
|
||||
raise ValueError("Truncating type '%s' not understood" % padding)
|
||||
|
||||
if padding == 'post':
|
||||
x[idx, :len(trunc)] = trunc
|
||||
elif padding == 'pre':
|
||||
x[idx, -len(trunc):] = trunc
|
||||
else:
|
||||
raise ValueError("Padding type '%s' not understood" % padding)
|
||||
return x
|
||||
|
||||
|
||||
def initHook(settings, vocab_size, pad_seq, maxlen, **kwargs):
|
||||
settings.vocab_size = vocab_size
|
||||
settings.pad_seq = pad_seq
|
||||
settings.maxlen = maxlen
|
||||
settings.input_types = [
|
||||
integer_value_sequence(vocab_size), integer_value(2)
|
||||
]
|
||||
|
||||
|
||||
@provider(
|
||||
init_hook=initHook, min_pool_size=-1, cache=CacheType.CACHE_PASS_IN_MEM)
|
||||
def process(settings, file):
|
||||
f = open(file, 'rb')
|
||||
train_set = pickle.load(f)
|
||||
f.close()
|
||||
x, y = train_set
|
||||
|
||||
# remove unk, namely remove the words out of dictionary
|
||||
x = remove_unk(x, settings.vocab_size)
|
||||
if settings.pad_seq:
|
||||
x = pad_sequences(x, maxlen=settings.maxlen, value=0.)
|
||||
|
||||
for i in range(len(y)):
|
||||
yield map(int, x[i]), int(y[i])
|
@ -0,0 +1,38 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
import imdb
|
||||
|
||||
num_class = 2
|
||||
vocab_size = 30000
|
||||
fixedlen = 100
|
||||
batch_size = get_config_arg('batch_size', int, 128)
|
||||
lstm_num = get_config_arg('lstm_num', int, 1)
|
||||
hidden_size = get_config_arg('hidden_size', int, 128)
|
||||
# whether to pad sequence into fixed length
|
||||
pad_seq = get_config_arg('pad_seq', bool, True)
|
||||
imdb.create_data('imdb.pkl')
|
||||
|
||||
args = {'vocab_size': vocab_size, 'pad_seq': pad_seq, 'maxlen': fixedlen}
|
||||
define_py_data_sources2(
|
||||
"train.list", None, module="provider", obj="process", args=args)
|
||||
|
||||
settings(
|
||||
batch_size=batch_size,
|
||||
learning_rate=2e-3,
|
||||
learning_method=AdamOptimizer(),
|
||||
regularization=L2Regularization(8e-4),
|
||||
gradient_clipping_threshold=25)
|
||||
|
||||
net = data_layer('data', size=vocab_size)
|
||||
net = embedding_layer(input=net, size=128)
|
||||
|
||||
for i in xrange(lstm_num):
|
||||
net = simple_lstm(input=net, size=hidden_size)
|
||||
|
||||
net = last_seq(input=net)
|
||||
net = fc_layer(input=net, size=2, act=SoftmaxActivation())
|
||||
|
||||
lab = data_layer('label', num_class)
|
||||
loss = classification_cost(input=net, label=lab)
|
||||
outputs(loss)
|
@ -0,0 +1,50 @@
|
||||
set -e
|
||||
|
||||
function train() {
|
||||
cfg=$1
|
||||
thread=$2
|
||||
args="lstm_num=${3},seq_pad=${4},hidden_size=${5},batch_size=${6}"
|
||||
paddle train --job=time \
|
||||
--config=$cfg \
|
||||
--use_gpu=1 \
|
||||
--trainer_count=$thread \
|
||||
--log_period=10 \
|
||||
--test_period=100 \
|
||||
--num_passes=1 \
|
||||
--feed_data=1 \
|
||||
--config_args=$args \
|
||||
>logs/rnn-pad${4}-${thread}gpu-lstm${3}-batch${6}-hid${5}.log 2>&1
|
||||
}
|
||||
|
||||
if [ ! -d "logs" ]; then
|
||||
mkdir logs
|
||||
fi
|
||||
|
||||
## padding, single gpu
|
||||
#-----config--gpu--lstm_num--padding--hidden_size--batch_size
|
||||
## lstm_num=2, batch_size=64
|
||||
train rnn.py 1 2 1 256 64
|
||||
train rnn.py 1 2 1 512 64
|
||||
train rnn.py 1 2 1 1280 64
|
||||
|
||||
## lstm_num=2, batch_size=128
|
||||
train rnn.py 1 2 1 256 128
|
||||
train rnn.py 1 2 1 512 128
|
||||
train rnn.py 1 2 1 1280 128
|
||||
|
||||
## lstm_num=4, batch_size=256
|
||||
train rnn.py 1 2 1 256 256
|
||||
train rnn.py 1 2 1 512 256
|
||||
train rnn.py 1 2 1 1280 256
|
||||
|
||||
|
||||
#==================multi gpus=====================#
|
||||
# hidden_size=256, lstm_num=2, different batch size
|
||||
train rnn.py 4 2 1 256 128
|
||||
train rnn.py 4 2 1 256 256
|
||||
train rnn.py 4 2 1 256 512
|
||||
|
||||
# hidden_size=512, lstm_num=4, different batch size
|
||||
train rnn.py 4 2 1 512 128
|
||||
train rnn.py 4 2 1 512 256
|
||||
train rnn.py 4 2 1 512 512
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue