Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into detection_map

emailweixu-patch-1
wanghaox 7 years ago
commit a0b57ac781

@ -39,7 +39,7 @@ option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_F
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_MKL "Compile PaddlePaddle with MKL support." ${AVX_FOUND})
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" OFF)
option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON)
option(WITH_STYLE_CHECK "Compile PaddlePaddle with style check" ON)
option(WITH_PYTHON "Compile PaddlePaddle with python interpreter" ON)
@ -137,7 +137,7 @@ include(external/openblas) # download, build, install openblas
include(external/mkldnn) # download, build, install mkldnn
include(external/swig) # download, build, install swig
include(external/warpctc) # download, build, install warpctc
include(external/boost) # download, build, install boost
include(external/boost) # download boost
include(external/any) # download libn::any
include(external/eigen) # download eigen3
include(external/pybind11) # download pybind11
@ -156,6 +156,7 @@ include(rdma) # set rdma libraries
include(flags) # set paddle compile flags
include(version) # set PADDLE_VERSION
include(coveralls) # set code coverage
include(inference_lib) # add paddle fluid inference libraries
include_directories("${PADDLE_SOURCE_DIR}")

@ -0,0 +1,18 @@
#FROM python:2.7.14
FROM nvidia/cuda:8.0-cudnn5-runtime-ubuntu16.04
RUN apt-get update && apt-get install -y python
RUN pip install -U kubernetes opencv-python && apt-get update -y && apt-get install -y iputils-ping libgtk2.0-dev
# NOTE: By default CI built wheel packages turn WITH_DISTRIBUTE=OFF,
# so we must build one with distribute support to install in this image.
RUN pip install paddlepaddle
RUN sh -c 'echo "import paddle.v2 as paddle\npaddle.dataset.cifar.train10()" | python'
RUN pip uninstall -y paddlepaddle
# below lines may change a lot for debugging
ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/paddle_k8s /usr/bin
ADD https://raw.githubusercontent.com/PaddlePaddle/cloud/develop/docker/k8s_tools.py /root
ADD *.whl /
RUN pip install /*.whl && rm -f /*.whl && \
chmod +x /usr/bin/paddle_k8s
ENV LD_LIBRARY_PATH=/usr/local/lib
ADD vgg16_fluid.py vgg16_v2.py /workspace/

@ -0,0 +1,76 @@
# Performance for Distributed vgg16
## Test Result
### Hardware Infomation
- CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
- cpu MHz : 2101.000
- cache size : 20480 KB
### Single Node Single Thread
- PServer Count: 10
- Trainer Count: 20
- Metrics: samples / sec
| Batch Size | 32 | 64 | 128 | 256 |
| -- | -- | -- | -- | -- |
| PaddlePaddle Fluid | 15.44 | 16.32 | 16.74 | 16.79 |
| PaddlePaddle v2 | 15.97 | 17.04 | 17.60 | 17.83 |
| TensorFlow | - | - | - | - |
### Different Batch Size
- PServer Count: 10
- Trainer Count: 20
- Per trainer CPU Core: 1
- Metrics: samples / sec
| Batch Size | 32 | 64 | 128 | 256 |
| -- | -- | -- | -- | -- |
| PaddlePaddle Fluid | 190.20 | 222.15 | 247.40 | 258.18 |
| PaddlePaddle v2 | 170.96 | 233.71 | 256.14 | 329.23 |
| TensorFlow | - | - | - | - |
### Accelerate Rate
- Pserver Count: 20
- Batch Size: 128
- Metrics: samples / sec
| Trainer Count | 20 | 40 | 80 | 100 |
| -- | -- | -- | -- | -- |
| PaddlePaddle Fluid | 263.29 (78.64%) | 518.80 (77.47%) | 836.26 (62.44%) | 1019.29 (60.89%) |
| PaddlePaddle v2 (need more tests) | 326.85 (92.85%) | 534.58 (75.93%) | 853.30 (60.60%) | 1041.99 (59.20%) |
| TensorFlow | - | - | - | - |
### Different Pserver Count
- Trainer Count: 60
- Batch Size: 128
- Metrics: samples/ sec
| PServer Count | 3 | 6 |10 | 20 |
| -- | -- | -- | -- | -- |
| PaddlePaddle Fluid(should fix in next PR) | 589.1 | 592.6 | 656.4 | 655.8 |
| PaddlePaddle v2 | 593.4 | 791.3 | 729.7 | 821.7 |
| TensorFlow | - | - | - | - |
*The performance gap between Fuild and v2 comes from the network interference.*
## Steps to Run the Performance Test
1. You must re-compile PaddlePaddle and enable `-DWITH_DISTRIBUTE` to build PaddlePaddle with distributed support.
1. When the build finishes, copy the output `whl` package located under `build/python/dist` to current directory.
1. Run `docker build -t [image:tag] .` to build the docker image and run `docker push [image:tag]` to push the image to reponsitory so kubernetes can find it.
1. Run `kubectl create -f pserver.yaml && kubectl create -f trainer.yaml` to start the job on your kubernetes cluster (you must configure the `kubectl` client before this step).
1. Run `kubectl get po` to get running pods, and run `kubectl logs [podID]` to fetch the pod log of pservers and trainers.
Check the logs for the distributed training progress and analyze the performance.
## Enable Verbos Logs
Edit `pserver.yaml` and `trainer.yaml` and add an environment variable `GLOG_v=3` and `GLOG_logtostderr=1` to see what happend in detail.

@ -0,0 +1,72 @@
apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
name: vgg16job-pserver
spec:
replicas: 10
template:
metadata:
labels:
paddle-job-pserver: vgg16job
spec:
hostNetwork: true
imagePullSecrets:
- name: job-registry-secret
containers:
- name: pserver
image: "registry.baidu.com/paddlepaddle/fluid_benchmark:vgg16"
imagePullPolicy: Always
ports:
- name: jobport-30236
containerPort: 30236
env:
- name: PADDLE_JOB_NAME
value: vgg16job
- name: MKL_NUM_THREADS
value: "1"
- name: TRAINING_ROLE
value: "PSERVER"
- name: TRAINERS
value: "20"
- name: PSERVERS
value: "10"
- name: TOPOLOGY
value: ""
- name: ENTRY
value: "MKL_NUM_THREADS=1 python /workspace/vgg16_fluid.py --local 0"
- name: TRAINER_PACKAGE
value: "/workspace"
- name: PADDLE_INIT_PORT
value: "30236"
- name: PADDLE_INIT_NICS
value: "xgbe0"
- name: PADDLE_INIT_TRAINER_COUNT
value: "1"
- name: PADDLE_INIT_PORTS_NUM
value: "1"
- name: PADDLE_INIT_PORTS_NUM_FOR_SPARSE
value: "1"
- name: PADDLE_INIT_NUM_GRADIENT_SERVERS
value: "20"
- name: PADDLE_INIT_NUM_PASSES
value: "1"
- name: PADDLE_INIT_USE_GPU
value: "0"
- name: LD_LIBRARY_PATH
value: "/usr/local/lib:/usr/local/nvidia/lib64"
- name: NAMESPACE
valueFrom:
fieldRef:
fieldPath: "metadata.namespace"
- name: POD_IP
valueFrom:
fieldRef:
fieldPath: "status.podIP"
command: ["paddle_k8s", "start_fluid"]
resources:
requests:
memory: 10Gi
cpu: 4
limits:
memory: 10Gi
cpu: 4

@ -0,0 +1,69 @@
apiVersion: batch/v1
kind: Job
metadata:
name: vgg16job-trainer
spec:
parallelism: 20
completions: 20
template:
metadata:
labels:
paddle-job: vgg16job
spec:
imagePullSecrets:
- name: job-registry-secret
hostNetwork: true
containers:
- name: trainer
image: "registry.baidu.com/paddlepaddle/fluid_benchmark:vgg16"
imagePullPolicy: Always
command: ["paddle_k8s", "start_fluid"]
env:
- name: PADDLE_JOB_NAME
value: vgg16job
- name: TRAINING_ROLE
value: "TRAINER"
- name: TRAINERS
value: "20"
- name: PSERVERS
value: "10"
- name: TOPOLOGY
value: ""
- name: ENTRY
value: "MKL_NUM_THREADS=1 python /workspace/vgg16_fluid.py --local 0 --batch_size 128"
- name: TRAINER_PACKAGE
value: "/workspace"
- name: PADDLE_INIT_PORT
value: "30236"
- name: PADDLE_INIT_NICS
value: "xgbe0"
- name: PADDLE_INIT_TRAINER_COUNT
value: "1"
- name: PADDLE_INIT_PORTS_NUM
value: "1"
- name: PADDLE_INIT_PORTS_NUM_FOR_SPARSE
value: "1"
- name: PADDLE_INIT_NUM_GRADIENT_SERVERS
value: "20"
- name: PADDLE_INIT_NUM_PASSES
value: "1"
- name: PADDLE_INIT_USE_GPU
value: "0"
- name: LD_LIBRARY_PATH
value: "/usr/local/lib:/usr/local/nvidia/lib64"
- name: NAMESPACE
valueFrom:
fieldRef:
fieldPath: "metadata.namespace"
- name: POD_IP
valueFrom:
fieldRef:
fieldPath: "status.podIP"
resources:
requests:
memory: 40Gi
cpu: 2
limits:
memory: 40Gi
cpu: 2
restartPolicy: Never

@ -0,0 +1,64 @@
apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
name: vgg16v2job-pserver
spec:
replicas: 10
template:
metadata:
labels:
paddle-job-pserver: vgg16v2job
spec:
hostNetwork: true
imagePullSecrets:
- name: job-registry-secret
containers:
- name: pserver
image: "registry.baidu.com/paddlepaddle/fluid_benchmark:vgg16"
imagePullPolicy: Always
ports:
- name: jobport-30236
containerPort: 30236
env:
- name: PADDLE_JOB_NAME
value: vgg16v2job
- name: TRAINERS
value: "20"
- name: PSERVERS
value: "10"
- name: TOPOLOGY
value: ""
- name: ENTRY
value: "python train.py"
- name: TRAINER_PACKAGE
value: "/workspace"
- name: PADDLE_INIT_PORT
value: "30236"
- name: PADDLE_INIT_NICS
value: "xgbe0"
- name: PADDLE_INIT_TRAINER_COUNT
value: "1"
- name: PADDLE_INIT_PORTS_NUM
value: "1"
- name: PADDLE_INIT_PORTS_NUM_FOR_SPARSE
value: "1"
- name: PADDLE_INIT_NUM_GRADIENT_SERVERS
value: "20"
- name: PADDLE_INIT_NUM_PASSES
value: "1"
- name: PADDLE_INIT_USE_GPU
value: "0"
- name: LD_LIBRARY_PATH
value: "/usr/local/lib:/usr/local/nvidia/lib64"
- name: NAMESPACE
valueFrom:
fieldRef:
fieldPath: "metadata.namespace"
command: ["paddle_k8s", "start_pserver"]
resources:
requests:
memory: 10Gi
cpu: 4
limits:
memory: 10Gi
cpu: 4

@ -0,0 +1,65 @@
apiVersion: batch/v1
kind: Job
metadata:
name: vgg16v2job-trainer
spec:
parallelism: 20
completions: 20
template:
metadata:
labels:
paddle-job: vgg16v2job
spec:
imagePullSecrets:
- name: job-registry-secret
hostNetwork: true
containers:
- name: trainer
image: "registry.baidu.com/paddlepaddle/fluid_benchmark:vgg16"
imagePullPolicy: Always
command: ["paddle_k8s", "start_trainer", "v2"]
env:
- name: PADDLE_JOB_NAME
value: vgg16v2job
- name: BATCH_SIZE
value: "256"
- name: TRAINERS
value: "20"
- name: PSERVERS
value: "10"
- name: TOPOLOGY
value: ""
- name: ENTRY
value: "cd /workspace && MKL_NUM_THREADS=1 python /workspace/vgg16_v2.py"
- name: TRAINER_PACKAGE
value: "/workspace"
- name: PADDLE_INIT_PORT
value: "30236"
- name: PADDLE_INIT_NICS
value: "xgbe0"
- name: PADDLE_INIT_TRAINER_COUNT
value: "1"
- name: PADDLE_INIT_PORTS_NUM
value: "1"
- name: PADDLE_INIT_PORTS_NUM_FOR_SPARSE
value: "1"
- name: PADDLE_INIT_NUM_GRADIENT_SERVERS
value: "20"
- name: PADDLE_INIT_NUM_PASSES
value: "2"
- name: PADDLE_INIT_USE_GPU
value: "0"
- name: LD_LIBRARY_PATH
value: "/usr/local/lib:/usr/local/nvidia/lib64"
- name: NAMESPACE
valueFrom:
fieldRef:
fieldPath: "metadata.namespace"
resources:
requests:
memory: 40Gi
cpu: 2
limits:
memory: 40Gi
cpu: 2
restartPolicy: Never

File diff suppressed because it is too large Load Diff

@ -0,0 +1,154 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import gzip
import paddle.v2.dataset.cifar as cifar
import paddle.v2 as paddle
import time
import os
DATA_DIM = 3 * 32 * 32
CLASS_DIM = 10
BATCH_SIZE = os.getenv("BATCH_SIZE")
if BATCH_SIZE:
BATCH_SIZE = int(BATCH_SIZE)
else:
BATCH_SIZE = 128
print "batch_size", BATCH_SIZE
NODE_COUNT = int(os.getenv("TRAINERS"))
ts = 0
def vgg(input, nums, class_dim):
def conv_block(input, num_filter, groups, num_channels=None):
return paddle.networks.img_conv_group(
input=input,
num_channels=num_channels,
pool_size=2,
pool_stride=2,
conv_num_filter=[num_filter] * groups,
conv_filter_size=3,
conv_act=paddle.activation.Relu(),
pool_type=paddle.pooling.Max())
assert len(nums) == 5
# the channel of input feature is 3
conv1 = conv_block(input, 64, nums[0], 3)
conv2 = conv_block(conv1, 128, nums[1])
conv3 = conv_block(conv2, 256, nums[2])
conv4 = conv_block(conv3, 512, nums[3])
conv5 = conv_block(conv4, 512, nums[4])
fc_dim = 512
fc1 = paddle.layer.fc(input=conv5,
size=fc_dim,
act=paddle.activation.Relu(),
layer_attr=paddle.attr.Extra(drop_rate=0.5))
fc2 = paddle.layer.fc(input=fc1,
size=fc_dim,
act=paddle.activation.Relu(),
layer_attr=paddle.attr.Extra(drop_rate=0.5))
out = paddle.layer.fc(input=fc2,
size=class_dim,
act=paddle.activation.Softmax())
return out
def vgg13(input, class_dim):
nums = [2, 2, 2, 2, 2]
return vgg(input, nums, class_dim)
def vgg16(input, class_dim):
nums = [2, 2, 3, 3, 3]
return vgg(input, nums, class_dim)
def vgg19(input, class_dim):
nums = [2, 2, 4, 4, 4]
return vgg(input, nums, class_dim)
def main():
global ts
paddle.init(use_gpu=False)
image = paddle.layer.data(
name="image", type=paddle.data_type.dense_vector(DATA_DIM))
lbl = paddle.layer.data(
name="label", type=paddle.data_type.integer_value(CLASS_DIM))
extra_layers = None
# NOTE: for v2 distributed training need averaging updates.
learning_rate = 1e-3 / NODE_COUNT
out = vgg16(image, class_dim=CLASS_DIM)
cost = paddle.layer.classification_cost(input=out, label=lbl)
# Create parameters
parameters = paddle.parameters.create(cost)
# Create optimizer
optimizer = paddle.optimizer.Momentum(
momentum=0.9,
regularization=paddle.optimizer.L2Regularization(rate=0.0005 *
BATCH_SIZE),
learning_rate=learning_rate / BATCH_SIZE,
learning_rate_decay_a=0.1,
learning_rate_decay_b=128000 * 35,
learning_rate_schedule="discexp", )
train_reader = paddle.batch(
paddle.reader.shuffle(
cifar.train10(),
# To use other data, replace the above line with:
# reader.train_reader('train.list'),
buf_size=1000),
batch_size=BATCH_SIZE)
test_reader = paddle.batch(
cifar.test10(),
# To use other data, replace the above line with:
# reader.test_reader('val.list'),
batch_size=BATCH_SIZE)
# Create trainer
trainer = paddle.trainer.SGD(cost=cost,
parameters=parameters,
update_equation=optimizer,
extra_layers=extra_layers,
is_local=False)
# End batch and end pass event handler
def event_handler(event):
global ts, ts_pass
if isinstance(event, paddle.event.BeginPass):
ts_pass = time.time()
if isinstance(event, paddle.event.BeginIteration):
ts = time.time()
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 1 == 0:
print "\nPass %d, Batch %d, Cost %f, %s, spent: %f" % (
event.pass_id, event.batch_id, event.cost, event.metrics,
time.time() - ts)
if isinstance(event, paddle.event.EndPass):
print "Pass %d end, spent: %f" % (event.pass_id,
time.time() - ts_pass)
result = trainer.test(reader=test_reader)
print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
trainer.train(
reader=train_reader, num_passes=200, event_handler=event_handler)
if __name__ == '__main__':
main()

@ -21,6 +21,7 @@ set(BOOST_URL "http://sourceforge.net/projects/boost/files/boost/${BOO
set(BOOST_SOURCES_DIR ${THIRD_PARTY_PATH}/boost)
set(BOOST_DOWNLOAD_DIR "${BOOST_SOURCES_DIR}/src/${BOOST_PROJECT}")
set(BOOST_INCLUDE_DIR "${BOOST_DOWNLOAD_DIR}/${BOOST_TAR}" CACHE PATH "boost include directory." FORCE)
set_directory_properties(PROPERTIES CLEAN_NO_CUSTOM 1)
include_directories(${BOOST_INCLUDE_DIR})

@ -28,9 +28,3 @@ endif()
add_dependencies(eigen3 extern_eigen3)
LIST(APPEND external_project_dependencies eigen3)
IF(NOT WITH_C_API AND WITH_FLUID)
INSTALL(FILES ${EIGEN_INCLUDE_DIR}/Eigen/Core DESTINATION third_party/eigen3/Eigen)
INSTALL(DIRECTORY ${EIGEN_INCLUDE_DIR}/Eigen/src DESTINATION third_party/eigen3/Eigen)
INSTALL(DIRECTORY ${EIGEN_INCLUDE_DIR}/unsupported/Eigen DESTINATION third_party/eigen3/unsupported)
ENDIF()

@ -52,7 +52,7 @@ ADD_DEPENDENCIES(gflags extern_gflags)
LIST(APPEND external_project_dependencies gflags)
IF(WITH_C_API OR WITH_FLUID)
IF(WITH_C_API)
INSTALL(DIRECTORY ${GFLAGS_INCLUDE_DIR} DESTINATION third_party/gflags)
IF(ANDROID)
INSTALL(FILES ${GFLAGS_LIBRARIES} DESTINATION third_party/gflags/lib/${ANDROID_ABI})

@ -68,7 +68,7 @@ LINK_LIBRARIES(glog gflags)
LIST(APPEND external_project_dependencies glog)
IF(WITH_C_API OR WITH_FLUID)
IF(WITH_C_API)
INSTALL(DIRECTORY ${GLOG_INCLUDE_DIR} DESTINATION third_party/glog)
IF(ANDROID)
INSTALL(FILES ${GLOG_LIBRARIES} DESTINATION third_party/glog/lib/${ANDROID_ABI})

@ -250,7 +250,7 @@ IF(NOT PROTOBUF_FOUND)
SET(PROTOBUF_PROTOC_LIBRARY ${extern_protobuf_PROTOC_LIBRARY}
CACHE FILEPATH "protoc library." FORCE)
IF(WITH_C_API OR WITH_FLUID)
IF(WITH_C_API)
INSTALL(DIRECTORY ${PROTOBUF_INCLUDE_DIR} DESTINATION third_party/protobuf)
IF(ANDROID)
INSTALL(FILES ${PROTOBUF_LITE_LIBRARY} DESTINATION third_party/protobuf/lib/${ANDROID_ABI})

@ -52,6 +52,7 @@ ExternalProject_Add(
-DWITH_TORCH=OFF
-DCMAKE_DISABLE_FIND_PACKAGE_Torch=ON
-DBUILD_SHARED=ON
-DBUILD_TESTS=OFF
-DCMAKE_POSITION_INDEPENDENT_CODE=ON
-DCMAKE_BUILD_TYPE=${THIRD_PARTY_BUILD_TYPE}
${EXTERNAL_OPTIONAL_ARGS}

@ -186,6 +186,11 @@ function(cc_library TARGET_NAME)
add_library(${TARGET_NAME} STATIC ${cc_library_SRCS})
endif()
if (cc_library_DEPS)
# Don't need link libwarpctc.so
if ("${cc_library_DEPS};" MATCHES "warpctc;")
list(REMOVE_ITEM cc_library_DEPS warpctc)
add_dependencies(${TARGET_NAME} warpctc)
endif()
add_dependencies(${TARGET_NAME} ${cc_library_DEPS})
target_link_libraries(${TARGET_NAME} ${cc_library_DEPS})
endif()
@ -224,12 +229,18 @@ function(cc_test TARGET_NAME)
if(WITH_TESTING)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
set(multiValueArgs SRCS DEPS ARGS)
cmake_parse_arguments(cc_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_executable(${TARGET_NAME} ${cc_test_SRCS})
target_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main paddle_memory gtest gflags)
# Support linking flags: --whole-archive (Linux) / -force_load (MacOS)
target_circle_link_libraries(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main paddle_memory gtest gflags)
if("${cc_test_DEPS}" MATCHES "ARCHIVE_START")
list(REMOVE_ITEM cc_test_DEPS ARCHIVE_START ARCHIVE_END)
endif()
add_dependencies(${TARGET_NAME} ${cc_test_DEPS} paddle_gtest_main paddle_memory gtest gflags)
add_test(NAME ${TARGET_NAME} COMMAND ${TARGET_NAME} WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
add_test(NAME ${TARGET_NAME}
COMMAND ${TARGET_NAME} ${cc_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif()
endfunction(cc_test)
@ -457,12 +468,12 @@ endfunction()
function(py_test TARGET_NAME)
if(WITH_TESTING)
set(options STATIC static SHARED shared)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS ARGS)
set(multiValueArgs SRCS DEPS ARGS ENVS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_BUILD_DIR}/lib-python
COMMAND env PYTHONPATH=${PADDLE_PYTHON_BUILD_DIR}/lib-python ${py_test_ENVS}
${PYTHON_EXECUTABLE} -u ${py_test_SRCS} ${py_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif()

@ -0,0 +1,90 @@
# make package for paddle fluid shared and static library
function(copy TARGET)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DSTS DEPS)
cmake_parse_arguments(copy_lib "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
list(LENGTH copy_lib_SRCS copy_lib_SRCS_len)
list(LENGTH copy_lib_DSTS copy_lib_DSTS_len)
if(NOT ${copy_lib_SRCS_len} EQUAL ${copy_lib_DSTS_len})
message(FATAL_ERROR "${TARGET} source numbers are not equal to destination numbers")
endif()
math(EXPR len "${copy_lib_SRCS_len} - 1")
add_custom_target(${TARGET} DEPENDS ${copy_lib_DEPS})
foreach(index RANGE ${len})
list(GET copy_lib_SRCS ${index} src)
list(GET copy_lib_DSTS ${index} dst)
add_custom_command(TARGET ${TARGET} PRE_BUILD COMMAND mkdir -p "${dst}")
if(IS_DIRECTORY ${src})
add_custom_command(TARGET ${TARGET} PRE_BUILD COMMAND cp -r "${src}" "${dst}")
else()
add_custom_command(TARGET ${TARGET} PRE_BUILD COMMAND cp "${src}" "${dst}")
endif()
endforeach()
endfunction()
# third party
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/eigen3")
copy(eigen3_lib
SRCS ${EIGEN_INCLUDE_DIR}/Eigen/Core ${EIGEN_INCLUDE_DIR}/Eigen/src ${EIGEN_INCLUDE_DIR}/unsupported/Eigen
DSTS ${dst_dir}/Eigen ${dst_dir}/Eigen ${dst_dir}/unsupported
)
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/gflags")
copy(gflags_lib
SRCS ${GFLAGS_INCLUDE_DIR} ${GFLAGS_LIBRARIES}
DSTS ${dst_dir} ${dst_dir}/lib
)
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/glog")
copy(glog_lib
SRCS ${GLOG_INCLUDE_DIR} ${GLOG_LIBRARIES}
DSTS ${dst_dir} ${dst_dir}/lib
)
IF(NOT PROTOBUF_FOUND)
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/protobuf")
copy(protobuf_lib
SRCS ${PROTOBUF_INCLUDE_DIR} ${PROTOBUF_LITE_LIBRARY}
DSTS ${dst_dir} ${dst_dir}/lib
)
ENDIF(NOT PROTOBUF_FOUND)
# paddle fluid module
set(src_dir "${PADDLE_SOURCE_DIR}/paddle")
set(dst_dir "${CMAKE_INSTALL_PREFIX}/paddle")
set(module "framework")
copy(framework_lib DEPS framework_py_proto
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/details/*.h ${PADDLE_BINARY_DIR}/paddle/framework/framework.pb.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/details ${dst_dir}/${module}
)
set(module "memory")
copy(memory_lib
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/detail/*.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/detail
)
set(module "inference")
copy(inference_lib DEPENDS paddle_fluid_shared
SRCS ${src_dir}/${module}/*.h ${PADDLE_BINARY_DIR}/paddle/inference/libpaddle_fluid.so
DSTS ${dst_dir}/${module} ${dst_dir}/${module}
)
set(module "platform")
copy(platform_lib
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/dynload/*.h ${src_dir}/${module}/details/*.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/dynload ${dst_dir}/${module}/details
)
set(module "string")
copy(string_lib
SRCS ${src_dir}/${module}/*.h ${src_dir}/${module}/tinyformat/*.h
DSTS ${dst_dir}/${module} ${dst_dir}/${module}/tinyformat
)
add_custom_target(inference_lib_dist DEPENDS
inference_lib framework_lib memory_lib platform_lib string_lib
gflags_lib glog_lib protobuf_lib eigen3_lib)

@ -47,3 +47,5 @@ sphinx_add_target(paddle_docs_cn
${SPHINX_CACHE_DIR_CN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
add_subdirectory(api)

@ -0,0 +1,20 @@
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
# HTML output director
set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/../templates/conf.py.en.in"
"${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY)
sphinx_add_target(paddle_api_docs
html
${BINARY_BUILD_DIR_EN}
${SPHINX_CACHE_DIR_EN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_EN})

@ -87,6 +87,11 @@ roi_pool
.. autoclass:: paddle.v2.layer.roi_pool
:noindex:
pad
----
.. autoclass:: paddle.v2.layer.pad
:noindex:
Norm Layer
==========
@ -133,6 +138,11 @@ grumemory
.. autoclass:: paddle.v2.layer.grumemory
:noindex:
gated_unit
-----------
.. autoclass:: paddle.v2.layer.gated_unit
:noindex:
Recurrent Layer Group
=====================
@ -340,6 +350,11 @@ bilinear_interp
.. autoclass:: paddle.v2.layer.bilinear_interp
:noindex:
dropout
--------
.. autoclass:: paddle.v2.layer.dropout
:noindex:
dot_prod
---------
.. autoclass:: paddle.v2.layer.dot_prod
@ -402,6 +417,11 @@ scale_shift
.. autoclass:: paddle.v2.layer.scale_shift
:noindex:
factorization_machine
---------------------
.. autoclass:: paddle.v2.layer.factorization_machine
:noindex:
Sampling Layers
===============
@ -420,22 +440,6 @@ multiplex
.. autoclass:: paddle.v2.layer.multiplex
:noindex:
Factorization Machine Layer
============================
factorization_machine
---------------------
.. autoclass:: paddle.v2.layer.factorization_machine
:noindex:
Slicing and Joining Layers
==========================
pad
----
.. autoclass:: paddle.v2.layer.pad
:noindex:
.. _api_v2.layer_costs:
Cost Layers
@ -526,6 +530,11 @@ multibox_loss
.. autoclass:: paddle.v2.layer.multibox_loss
:noindex:
detection_output
----------------
.. autoclass:: paddle.v2.layer.detection_output
:noindex:
Check Layer
============
@ -534,31 +543,10 @@ eos
.. autoclass:: paddle.v2.layer.eos
:noindex:
Miscs
=====
dropout
--------
.. autoclass:: paddle.v2.layer.dropout
:noindex:
Activation with learnable parameter
===================================
Activation
==========
prelu
--------
.. autoclass:: paddle.v2.layer.prelu
:noindex:
gated_unit
-----------
.. autoclass:: paddle.v2.layer.gated_unit
:noindex:
Detection output Layer
======================
detection_output
----------------
.. autoclass:: paddle.v2.layer.detection_output
:noindex:

@ -73,3 +73,10 @@ wmt14
.. automodule:: paddle.v2.dataset.wmt14
:members:
:noindex:
wmt16
+++++
.. automodule:: paddle.v2.dataset.wmt16
:members:
:noindex:

@ -1,9 +1,14 @@
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
===========
DataFeeder
data_feeder
===========
DataFeeder
-----------
.. automodule:: paddle.v2.fluid.data_feeder
:members: DataFeeder
----------
.. autoclass:: paddle.v2.fluid.data_feeder.DataFeeder
:members:
:noindex:

@ -1,9 +1,21 @@
===========
Evaluator
===========
Evaluator
-----------
.. automodule:: paddle.v2.fluid.evaluator
:members: Evaluator
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
=========
evaluator
=========
Accuracy
--------
.. autoclass:: paddle.v2.fluid.evaluator.Accuracy
:members:
:noindex:
ChunkEvaluator
--------------
.. autoclass:: paddle.v2.fluid.evaluator.ChunkEvaluator
:members:
:noindex:

@ -1,9 +1,32 @@
===========
Executor
===========
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
========
executor
========
Executor
--------
.. autoclass:: paddle.v2.fluid.executor.Executor
:members:
:noindex:
global_scope
------------
.. autofunction:: paddle.v2.fluid.executor.global_scope
:noindex:
scope_guard
-----------
.. automodule:: paddle.v2.fluid.executor
:members: Executor
.. autofunction:: paddle.v2.fluid.executor.scope_guard
:noindex:
switch_scope
------------
.. autofunction:: paddle.v2.fluid.executor.switch_scope
:noindex:

@ -0,0 +1,109 @@
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import sys
import types
import paddle.v2.fluid as fluid
def parse_arg():
parser = argparse.ArgumentParser()
parser.add_argument('--submodules', nargs="*")
parser.add_argument(
'module', type=str, help='Generate the documentation of which module')
return parser.parse_args()
class DocGenerator(object):
def __init__(self, module_name, stream=sys.stdout):
self.stream = stream
self.module_name = module_name
if not hasattr(fluid, module_name):
raise ValueError("Cannot find fluid.{0}".format(module_name))
else:
self.module = getattr(fluid, module_name)
self.stream.write('''.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
''')
self._print_header_(module_name, dot='=', is_title=True)
def print_submodule(self, submodule_name):
submodule = getattr(self.module, submodule_name)
if submodule is None:
raise ValueError("Cannot find submodule {0}".format(submodule_name))
self.print_section(submodule_name)
for item in submodule.__all__:
self.print_item(item)
def print_current_module(self):
for item in self.module.__all__:
self.print_item(item)
def print_section(self, name):
self._print_header_(name, dot='=', is_title=False)
def print_item(self, name):
item = getattr(self.module, name)
if isinstance(item, types.TypeType):
self.print_class(name)
elif isinstance(item, types.FunctionType):
self.print_method(name)
else:
raise RuntimeError("Unsupported item {0}".format(name))
def print_class(self, name):
self._print_header_(name, dot='-', is_title=False)
self.stream.write('''.. autoclass:: paddle.v2.fluid.{0}.{1}
:members:
:noindex:
'''.format(self.module_name, name))
def print_method(self, name):
self._print_header_(name, dot='-', is_title=False)
self.stream.write('''.. autofunction:: paddle.v2.fluid.{0}.{1}
:noindex:
'''.format(self.module_name, name))
def _print_header_(self, name, dot, is_title):
dot_line = dot * len(name)
if is_title:
self.stream.write(dot_line)
self.stream.write('\n')
self.stream.write(name)
self.stream.write('\n')
self.stream.write(dot_line)
self.stream.write('\n')
self.stream.write('\n')
def main():
args = parse_arg()
gen = DocGenerator(args.module)
if args.submodules is None:
gen.print_current_module()
else:
for submodule_name in args.submodules:
gen.print_submodule(submodule_name)
if __name__ == '__main__':
main()

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save