|
|
|
@ -46,43 +46,6 @@ class TestOptimizer(unittest.TestCase):
|
|
|
|
|
self.assertEqual([op.type for op in opts],
|
|
|
|
|
["fill_constant", "elementwise_mul", "sgd"])
|
|
|
|
|
|
|
|
|
|
def test_sgd_optimizer_with_global_step(self):
|
|
|
|
|
init_program = framework.Program()
|
|
|
|
|
program = framework.Program()
|
|
|
|
|
block = program.global_block()
|
|
|
|
|
mul_x = block.create_parameter(
|
|
|
|
|
dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
|
|
|
|
|
mul_y = block.create_var(
|
|
|
|
|
dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
|
|
|
|
|
mul_out = block.create_var(
|
|
|
|
|
dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
|
|
|
|
|
block.append_op(
|
|
|
|
|
type="mul",
|
|
|
|
|
inputs={"X": mul_x,
|
|
|
|
|
"Y": mul_y},
|
|
|
|
|
outputs={"Out": mul_out},
|
|
|
|
|
attrs={"x_num_col_dims": 1})
|
|
|
|
|
mean_out = block.create_var(
|
|
|
|
|
dtype="float32", shape=[1], lod_level=0, name="mean.out")
|
|
|
|
|
block.append_op(
|
|
|
|
|
type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out})
|
|
|
|
|
global_step = block.create_var(
|
|
|
|
|
dtype="float32", shape=[1], lod_level=0, name="step")
|
|
|
|
|
learning_rate = 0.01
|
|
|
|
|
sgd_optimizer = optimizer.SGDOptimizer(
|
|
|
|
|
learning_rate=learning_rate, global_step=global_step)
|
|
|
|
|
opts, _ = sgd_optimizer.minimize(mean_out, init_program)
|
|
|
|
|
self.assertEqual(len(opts), 4)
|
|
|
|
|
self.assertEqual(
|
|
|
|
|
[op.type for op in opts],
|
|
|
|
|
["fill_constant", "elementwise_mul", "sgd", "increment"])
|
|
|
|
|
|
|
|
|
|
# Check init_program
|
|
|
|
|
init_ops = init_program.global_block().ops
|
|
|
|
|
self.assertEqual(len(init_ops), 1)
|
|
|
|
|
self.assertEqual(init_ops[0].type, "fill_constant")
|
|
|
|
|
self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestMomentumOptimizer(unittest.TestCase):
|
|
|
|
|
class MockMomentum(optimizer.MomentumOptimizer):
|
|
|
|
|