|
|
|
|
@ -16,6 +16,7 @@ limitations under the License. */
|
|
|
|
|
|
|
|
|
|
#include "paddle/fluid/framework/eigen.h"
|
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
|
#include "paddle/fluid/operators/math/selected_rows_functor.h"
|
|
|
|
|
#include "paddle/fluid/platform/transform.h"
|
|
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
@ -61,14 +62,32 @@ class ClipKernel : public framework::OpKernel<T> {
|
|
|
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
|
|
|
auto max = context.Attr<T>("max");
|
|
|
|
|
auto min = context.Attr<T>("min");
|
|
|
|
|
auto* x = context.Input<Tensor>("X");
|
|
|
|
|
auto* out = context.Output<Tensor>("Out");
|
|
|
|
|
T* out_data = out->mutable_data<T>(context.GetPlace());
|
|
|
|
|
const T* x_data = x->data<T>();
|
|
|
|
|
int64_t numel = x->numel();
|
|
|
|
|
Transform<DeviceContext> trans;
|
|
|
|
|
trans(context.template device_context<DeviceContext>(), x_data,
|
|
|
|
|
x_data + numel, out_data, ClipFunctor<T>(min, max));
|
|
|
|
|
auto* x_var = context.InputVar("X");
|
|
|
|
|
if (x_var->IsType<framework::LoDTensor>()) {
|
|
|
|
|
auto* x = context.Input<framework::LoDTensor>("X");
|
|
|
|
|
auto* out = context.Output<framework::LoDTensor>("Out");
|
|
|
|
|
T* out_data = out->mutable_data<T>(context.GetPlace());
|
|
|
|
|
const T* x_data = x->data<T>();
|
|
|
|
|
int64_t numel = x->numel();
|
|
|
|
|
Transform<DeviceContext> trans;
|
|
|
|
|
trans(context.template device_context<DeviceContext>(), x_data,
|
|
|
|
|
x_data + numel, out_data, ClipFunctor<T>(min, max));
|
|
|
|
|
} else if (x_var->IsType<framework::SelectedRows>()) {
|
|
|
|
|
auto* x = context.Input<framework::SelectedRows>("X");
|
|
|
|
|
auto* out = context.Output<framework::SelectedRows>("Out");
|
|
|
|
|
PADDLE_ENFORCE_NE(x, out,
|
|
|
|
|
"Inplace clip is not allowed when x is SelectedRows");
|
|
|
|
|
math::scatter::MergeAdd<DeviceContext, T> merge_func;
|
|
|
|
|
merge_func(context.template device_context<DeviceContext>(), *x, out);
|
|
|
|
|
auto* out_tensor = out->mutable_value();
|
|
|
|
|
auto* out_data = out_tensor->data<T>();
|
|
|
|
|
int64_t numel = out_tensor->numel();
|
|
|
|
|
Transform<DeviceContext> trans;
|
|
|
|
|
trans(context.template device_context<DeviceContext>(), out_data,
|
|
|
|
|
out_data + numel, out_data, ClipFunctor<T>(min, max));
|
|
|
|
|
} else {
|
|
|
|
|
PADDLE_THROW("ClipOp only supports LoDTensor and SelectedRows");
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
@ -78,10 +97,12 @@ class ClipGradKernel : public framework::OpKernel<T> {
|
|
|
|
|
void Compute(const framework::ExecutionContext& context) const override {
|
|
|
|
|
auto max = context.Attr<T>("max");
|
|
|
|
|
auto min = context.Attr<T>("min");
|
|
|
|
|
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
|
|
|
|
|
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
|
|
|
|
|
auto* d_out =
|
|
|
|
|
context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
|
|
|
|
|
auto* d_x =
|
|
|
|
|
context.Output<framework::LoDTensor>(framework::GradVarName("X"));
|
|
|
|
|
if (d_x != nullptr) {
|
|
|
|
|
auto* x = context.Input<Tensor>("X");
|
|
|
|
|
auto* x = context.Input<framework::LoDTensor>("X");
|
|
|
|
|
int64_t numel = d_out->numel();
|
|
|
|
|
auto* d_x_data = d_x->mutable_data<T>(context.GetPlace());
|
|
|
|
|
const T* d_out_data = d_out->data<T>();
|
|
|
|
|
|